1. Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants.
- Author
-
Wu Y, Li Y, Liu Y, Zhu D, Xing S, Lambert N, Weisbecker H, Liu S, Davis B, Zhang L, Wang M, Yuan G, You CZ, Zhang A, Duncan C, Xie W, Wang Y, Wang Y, Kanamurlapudi S, Evert GG, Putcha A, Dickey MD, Huang K, and Bai W
- Subjects
- Animals, Swine, Orbit surgery, Electric Impedance, Biocompatible Materials chemistry, Prostheses and Implants
- Abstract
Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within internal organs, offering transformative potential in the diagnosis, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive two dimensionally layered material, which we refer to as OBXene), which exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. We report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.
- Published
- 2024
- Full Text
- View/download PDF