1. Iguratimod represses B cell terminal differentiation linked with the inhibition of PKC/EGR1 axis
- Author
-
Yan Ye, Mei Liu, Longhai Tang, Fang Du, Yuanhua Liu, Pei Hao, Qiong Fu, Qiang Guo, Qingran Yan, Xiaoming Zhang, and Chunde Bao
- Subjects
Iguratimod ,Rheumatoid arthritis (RA) ,Protein kinase C (PKC) ,Early growth response 1 (EGR1) ,Antibody-secreting cell (ASC) ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background This study aimed to explore the molecular mechanism and clinical relevance of iguratimod in the regulation of human B cell terminal differentiation. Methods An in vitro human antibody-secreting cell (ASC) differentiation system was established to test the effect of iguratimod. B cell phenotype and key transcription factors (TFs) relevant to ASC differentiation were analyzed through flow cytometry and qPCR. The COX-2 activity was measured by enzyme immunoassay (EIA). RNA sequencing was used to identify potential targets of iguratimod. We enrolled six treatment-naive rheumatoid arthritis (RA) patients whose blood samples were collected for phenotypic and molecular studies along with 12-week iguratimod monotherapy. Results Iguratimod inhibited human ASC generation without affecting B cell activation and proliferation. Iguratimod showed only weak COX-2 activity. Gene set enrichment analysis (GSEA) identified that protein kinase C (PKC) pathway was targeted by iguratimod which was confirmed by PKC activity detection. Furthermore, early growth response 1 (EGR1), a target of PKC and a non-redundant TF for ASC differentiation, was found to be the most downregulated gene in iguratimod-treated B cells. Lastly, iguratimod monotherapy decreased peripheral ASCs and was associated with improved disease activity. The expression of major ASC-related TFs, including EGR1, was similarly downregulated in patient blood samples. Conclusions Iguratimod inhibits ASC differentiation both in vitro and in RA patients. Our study suggests that PKC/EGR1 axis, rather than COX-2, is critically involved in the inhibitory effect by iguratimod on human ASC differentiation. Iguratimod could have a broader application to treat B cell-related autoimmune diseases in clinics.
- Published
- 2019
- Full Text
- View/download PDF