1. Self-assembled "dock and lock" system for linking payloads to targeting proteins.
- Author
-
Backer MV, Patel V, Jehning BT, and Backer JM
- Subjects
- Animals, Base Sequence, Cloning, Molecular, DNA Primers, Mice, Mice, Inbred BALB C, Mutagenesis, Site-Directed, Proteins chemistry
- Abstract
Random conjugation of therapeutic or diagnostic payloads to targeting proteins generates functionally heterogeneous products. Conjugation of payloads to an adapter that binds to a peptide tag engineered into a targeting protein provides an alternative strategy. To progress into clinical development, an adapter/docking tag system should include humanized components and be stable in circulation. We describe here an adapter/docking tag system based on mutated fragments of human RNase I that spontaneously bind to each other and form a conjugate with a disulfide bond between complimentary cysteine residues. This self-assembled "dock and lock" system utilizes the previously described fusion C-tag, a 1-15 aa fragment of human RNase I with the R4C amino acid substitution, and a newly engineered adapter protein (Ad-C), a 21-127-aa fragment of human RNase I with the V118C substitution. Two vastly different C-tagged recombinant proteins, human vascular endothelial growth factor (VEGF) and a 254-aa long N-terminal fragment of anthrax lethal factor (LFn), retain functional activities after spontaneous conjugation of Ad-C to N-terminal or C-terminal C-tag, respectively. Ad-C modified with pegylated phospolipid and inserted into the lipid membrane of drug-loaded liposomes (Doxil) retained the ability to conjugate C-tagged proteins, yielding targeted liposomes decorated with functionally active proteins. To further optimize the system, we engineered an adapter with an additional cysteine residue at position 88 for site-specific modification, conjugated it to C-tagged VEGF, and labeled with a near-infrared fluorescent dye Cy5.5, yielding a unique functionally active probe for in vivo molecular imaging. We expect that this self-assembled "dock and lock" system will provide new opportunities for using functionally active proteins for biomedical purposes.
- Published
- 2006
- Full Text
- View/download PDF