6 results on '"D. Cahen"'
Search Results
2. Protein bioelectronics: a review of what we do and do not know.
- Author
-
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, and Lederman D
- Subjects
- Animals, Biomimetics, Electron Transport, Humans, Electronics methods, Proteins chemistry, Proteins metabolism
- Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
- Published
- 2018
- Full Text
- View/download PDF
3. Electronic transport via proteins.
- Author
-
Amdursky N, Marchak D, Sepunaru L, Pecht I, Sheves M, and Cahen D
- Subjects
- Animals, Humans, Electron Transport, Proteins chemistry
- Abstract
A central vision in molecular electronics is the creation of devices with functional molecular components that may provide unique properties. Proteins are attractive candidates for this purpose, as they have specific physical (optical, electrical) and chemical (selective binding, self-assembly) functions and offer a myriad of possibilities for (bio-)chemical modification. This Progress Report focuses on proteins as potential building components for future bioelectronic devices as they are quite efficient electronic conductors, compared with saturated organic molecules. The report addresses several questions: how general is this behavior; how does protein conduction compare with that of saturated and conjugated molecules; and what mechanisms enable efficient conduction across these large molecules? To answer these questions results of nanometer-scale and macroscopic electronic transport measurements across a range of organic molecules and proteins are compiled and analyzed, from single/few molecules to large molecular ensembles, and the influence of measurement methods on the results is considered. Generalizing, it is found that proteins conduct better than saturated molecules, and somewhat poorer than conjugated molecules. Significantly, the presence of cofactors (redox-active or conjugated) in the protein enhances their conduction, but without an obvious advantage for natural electron transfer proteins. Most likely, the conduction mechanisms are hopping (at higher temperatures) and tunneling (below ca. 150-200 K)., (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2014
- Full Text
- View/download PDF
4. Proteins as solid-state electronic conductors.
- Author
-
Ron I, Pecht I, Sheves M, and Cahen D
- Subjects
- Azurin chemistry, Bacteriorhodopsins chemistry, Electric Conductivity, Electrodes, Electron Transport, Microscopy, Atomic Force, Proteins chemistry
- Abstract
Protein structures can facilitate long-range electron transfer in solution. But a fundamental question remains: can these structures also serve as solid-state electronic conductors? Answering this question requires methods for studying conductivity of the "dry" protein (which only contains tightly bound structured water molecules) sandwiched between two electronic conductors in a solid-state type configuration. If successful, such systems could serve as the basis for future, bioinspired electronic device technology. In this Account, we survey, analyze, and compare macroscopic and nanoscopic (scanning probe) solid-state conductivities of proteins, noting the inherent constraints of each of these, and provide the first status report on this research area. This analysis shows convincing evidence that "dry" proteins pass orders of magnitude higher currents than saturated molecules with comparable thickness and that proteins with known electrical activity show electronic conductivity, nearly comparable to that of conjugated molecules ("wires"). These findings suggest that the structural features of proteins must have elements that facilitate electronic conductivity, even if they do not have a known electron transfer function. As a result, proteins could serve not only as sensing, polar,or photoactive elements in devices (such as field-effect transistor configurations) but also as electronic conductors. Current knowledge of peptide synthesis and protein modification paves the way toward a greater understanding of how changes in a protein's structure affect its conductivity. Such an approach could minimize the need for biochemical cascades in systems such as enzyme-based circuits, which transduce the protein's response to electronic current. In addition, as precision and sensitivity of solid-state measurements increase, and as knowledge of the structure and function of "dry" proteins grows, electronic conductivity may become an additional approach to study electron transfer in proteins and solvent effects without the introduction of donor or acceptor moieties. We are particularly interested in whether evolution might have prompted the electronic carrier transport capabilities of proteins for which no electrically active function is known in their native biological environment and anticipate that further research may help address this fascinating question.
- Published
- 2010
- Full Text
- View/download PDF
5. Proteins as electronic materials: electron transport through solid-state protein monolayer junctions.
- Author
-
Ron I, Sepunaru L, Itzhakov S, Belenkova T, Friedman N, Pecht I, Sheves M, and Cahen D
- Subjects
- Animals, Cattle, Microscopy, Atomic Force, Models, Molecular, Serum Albumin, Bovine, Surface Properties, Electron Transport, Proteins chemistry
- Abstract
Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied intensively in aqueous solutions. Over the past decade, attempts were made to integrate proteins into solid-state junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules in the junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer junctions, assembled on a Si platform, of proteins of three different families: azurin (Az), a blue-copper ET protein, bacteriorhodopsin (bR), a membrane protein-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (I-V) measurements on such junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanism(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such biomolecules as current-carrying elements in solid-state electronic devices.
- Published
- 2010
- Full Text
- View/download PDF
6. Covalent attachment of bacteriorhodopsin monolayer to bromo-terminated solid supports: preparation, characterization, and protein stability.
- Author
-
Jin Y, Girshevitz O, Friedman N, Ron I, Cahen D, and Sheves M
- Subjects
- Bromine Compounds, Microscopy, Atomic Force, Spectroscopy, Fourier Transform Infrared, Spectrum Analysis, Bacteriorhodopsins chemistry, Biosensing Techniques methods, Proteins chemistry
- Abstract
The interfacing of functional proteins with solid supports and the study of related protein-adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br-terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm(-1) in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple-membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br-terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current-voltage (I-V) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein-containing device structures.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.