1. Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function.
- Author
-
Piatek M, Grassiri B, O'Ferrall LM, Piras AM, Batoni G, Esin S, O'Connor C, Griffith D, Healy AM, and Kavanagh K
- Subjects
- Gallium chemistry, Gallium pharmacology, Microbial Sensitivity Tests, Fungal Proteins metabolism, Coordination Complexes pharmacology, Coordination Complexes chemistry, Pyridines pharmacology, Pyridines chemistry, Aspergillus fumigatus drug effects, Aspergillus fumigatus metabolism, Proteomics, Mitochondria drug effects, Mitochondria metabolism, Antifungal Agents pharmacology, Antifungal Agents chemistry
- Abstract
Infections caused by the airborne fungal pathogen, Aspergillus fumigatus, are increasing in severity due to growing numbers of immunocompromised individuals and the increasing incidence of antifungal drug resistance, exacerbating treatment challenges. Gallium has proven to be a strong candidate in the fight against microbial pathogens due to its iron-mimicking capability and substitution of Ga(III) in place of Fe(III), disrupting iron-dependent pathways. Since the antimicrobial properties of 2,2'-bipyridine and derivatives have been previously reported, we assessed the in vitro activity and proteomic effects of a recently reported heteroleptic Ga(III) polypyridyl catecholate compound against A. fumigatus. This compound has demonstrated promising growth-inhibition and impact on the A. fumigatus proteome compared to untreated controls. Proteins associated with DNA replication and repair mechanisms along with lipid metabolism and the oxidative stress responses were elevated in abundance compared to control. Crucially, a large number of mitochondrial proteins were reduced in abundance. Respiration is an important source of energy to fuel metabolic processes required for growth, survival and virulence, the disruption of which may be a viable strategy for the treatment of microbial infections., Competing Interests: Declarations. Conflict of interest: There are no conflicts to declare. Ethical approval: Not required. Consent for publication: Not relevant., (© 2024. The Author(s), under exclusive licence to Society for Biological Inorganic Chemistry (SBIC).)
- Published
- 2024
- Full Text
- View/download PDF