1. A multi-scale approach reveals that NF-κB cRel enforces a B-cell decision to divide.
- Author
-
Shokhirev MN, Almaden J, Davis-Turak J, Birnbaum HA, Russell TM, Vargas JA, and Hoffmann A
- Subjects
- Animals, Apoptosis, B-Lymphocytes metabolism, Cell Proliferation, Mice, Models, Molecular, Sequence Analysis, RNA, Signal Transduction, Spleen cytology, B-Lymphocytes cytology, Cell Division, NF-kappa B metabolism, Proto-Oncogene Proteins c-rel metabolism
- Abstract
Understanding the functions of multi-cellular organs in terms of the molecular networks within each cell is an important step in the quest to predict phenotype from genotype. B-lymphocyte population dynamics, which are predictive of immune response and vaccine effectiveness, are determined by individual cells undergoing division or death seemingly stochastically. Based on tracking single-cell time-lapse trajectories of hundreds of B cells, single-cell transcriptome, and immunofluorescence analyses, we constructed an agent-based multi-modular computational model to simulate lymphocyte population dynamics in terms of the molecular networks that control NF-κB signaling, the cell cycle, and apoptosis. Combining modeling and experimentation, we found that NF-κB cRel enforces the execution of a cellular decision between mutually exclusive fates by promoting survival in growing cells. But as cRel deficiency causes growing B cells to die at similar rates to non-growing cells, our analysis reveals that the phenomenological decision model of wild-type cells is rooted in a biased race of cell fates. We show that a multi-scale modeling approach allows for the prediction of dynamic organ-level physiology in terms of intra-cellular molecular networks., (© 2015 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2015
- Full Text
- View/download PDF