1. Discovery and optimization of thiazole-based quorum sensing inhibitors as potent blockers of Pseudomonas aeruginosa pathogenicity.
- Author
-
Abdelsamie AS, Hamed MM, Schütz C, Röhrig T, Kany AM, Schmelz S, Blankenfeldt W, Hirsch AKH, Hartmann RW, and Empting M
- Subjects
- Structure-Activity Relationship, Humans, Drug Discovery, Molecular Structure, Microbial Sensitivity Tests, Dose-Response Relationship, Drug, Bacterial Proteins antagonists & inhibitors, Bacterial Proteins metabolism, Animals, Quorum Sensing drug effects, Pseudomonas aeruginosa drug effects, Thiazoles chemistry, Thiazoles pharmacology, Thiazoles chemical synthesis, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents chemical synthesis
- Abstract
Pseudomonas aeruginosa causes life-threatening infections especially in hospitalized patients and shows an increasing resistance to established antibiotics. A process known as quorum sensing (QS) enables the pathogen to collectively adapt to various environmental conditions. Disrupting this cell-to-cell communication machinery by small-molecular entities leads to a blockade of bacterial pathogenicity. We aim to devise QS inhibitors acting on the PA-specific PQS QS system via the signal-molecule receptor and transcriptional regulator PqsR (MvfR). In this manuscript, we describe the further optimization of PqsR inverse agonists by broadening the structural space of a previously described triazole-bearing lead compound and arriving at highly potent thiazole derivatives with activities against P. aeruginosa virulence factor pyocyanin in the nanomolar range. All new derivatives were profiled regarding biological activity as well as in vitro ADMET parameters. Additionally, we assessed safety-pharmacology characteristics of the two most promising compounds both bearing a 3-chloro-4-isopropoxyphenyl motive. Demonstrating an overall favorable profile, our new PqsR inverse agonists represent a valuable addition as optimized lead compounds, enabling preclinical development of P. aeruginosa-specific pathoblockers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF