1. Profiling mechanisms of alkane hydroxylase activity in vivo using the diagnostic substrate norcarane.
- Author
-
Rozhkova-Novosad EA, Chae JC, Zylstra GJ, Bertrand EM, Alexander-Ozinskas M, Deng D, Moe LA, van Beilen JB, Danahy M, Groves JT, and Austin RN
- Subjects
- Burkholderia cepacia metabolism, Pseudomonas putida metabolism, Rhodococcus metabolism, Burkholderia cepacia enzymology, Cytochrome P-450 CYP4A metabolism, Pseudomonas putida enzymology, Rhodococcus enzymology, Terpenes metabolism
- Abstract
Mechanistically informative chemical probes are used to characterize the activity of functional alkane hydroxylases in whole cells. Norcarane is a substrate used to reveal the lifetime of radical intermediates formed during alkane oxidation. Results from oxidations of this probe with organisms that contain the two most prevalent medium-chain-length alkane-oxidizing metalloenzymes, alkane omega-monooxygenase (AlkB) and cytochrome P450 (CYP), are reported. The results--radical lifetimes of 1-7 ns for AlkB and less than 100 ps for CYP--indicate that these two classes of enzymes are mechanistically distinguishable and that whole-cell mechanistic assays can identify the active hydroxylase. The oxidation of norcarane by several recently isolated strains (Hydrocarboniphaga effusa AP103, rJ4, and rJ5, whose alkane-oxidizing enzymes have not yet been identified) is also reported. Radical lifetimes of 1-3 ns are observed, consistent with these organisms containing an AlkB-like enzyme and inconsistent with their employing a CYP-like enzyme for growth on hydrocarbons.
- Published
- 2007
- Full Text
- View/download PDF