1. Low-Temperature Solution Synthesis of Transition Metal Dichalcogenide Alloys with Tunable Optical Properties.
- Author
-
Sun, Yifan, Fujisawa, Kazunori, Lin, Zhong, Lei, Yu, Mondschein, Jared S., Terrones, Mauricio, and Schaak*, Raymond E.
- Subjects
- *
TRANSITION metals , *NANOSTRUCTURES , *OPTOELECTRONICS , *X-ray diffraction , *RAMAN spectroscopy - Abstract
Nanostructures of layered transition metal dichalcogenide (TMD) alloys with tunable compositions are promising candidates for a broad scope of applications in electronics, optoelectronics, topological devices, and catalysis. Most TMD alloy nanostructures are synthesized as films on substrates using gas-phase methods at high temperatures. However, lower temperature solution routes present an attractive alternative with the potential for larger-scale, higher-yield syntheses of freestanding, higher surface area materials. Here, we report the direct solution synthesis of colloidal few-layer TMD alloys, MoxW1-xSe2 and WS2ySe2(1-y), exhibiting fully tunable metal and chalcogen compositions that span the MoSe2- WSe2 and WS2-WSe2 solid solutions, respectively. Chemical guidelines for achieving the targeted compounds are presented, along with comprehensive structural characterizations (X-ray diffraction, electron microscopy, Raman, and UV-visible spectroscopies). High-resolution microscopic imaging confirms the formation of TMD alloys and identifies a random distribution of the alloyed elements. Analysis of the tilt-angle dependency of the intensities associated with atomic-resolution annular dark field imaging line scans reveals the types of point vacancies present in the samples, thus providing atomic-level insights into the structures of colloidal TMD alloy nanostructures that were previously only accessible for substrate-confined films. The A excitonic transition of the TMD alloy nanostructures can be readily adjusted between 1.51 and 1.93 eV through metal and chalcogen alloying, correlating the compositional modulation to the realization of tunable optical properties. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF