1. Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease.
- Author
-
Moe A, Rayasam A, Sauber G, Shah RK, Doherty A, Yuan CY, Szabo A, Moore BM 2nd, Colonna M, Cui W, Romero J, Zamora AE, Hillard CJ, and Drobyski WR
- Subjects
- Animals, Mice, Allografts, Disease Models, Animal, Hematopoietic Stem Cell Transplantation adverse effects, Mice, Knockout, T-Lymphocytes immunology, T-Lymphocytes metabolism, Male, Graft vs Host Disease immunology, Graft vs Host Disease pathology, Graft vs Host Disease metabolism, Graft vs Host Disease genetics, Microglia metabolism, Microglia immunology, Microglia pathology, Neuroinflammatory Diseases immunology, Neuroinflammatory Diseases pathology, Neuroinflammatory Diseases metabolism, Receptor, Cannabinoid, CB2 genetics, Receptor, Cannabinoid, CB2 metabolism, Receptor, Cannabinoid, CB2 immunology
- Abstract
Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.
- Published
- 2024
- Full Text
- View/download PDF