1. Dose-dependent effects of siRNA-mediated inhibition of SCAP on PCSK9, LDLR, and plasma lipids in mouse and rhesus monkey[S]
- Author
-
David G. McLaren, CarolAnn Keohan, Stephanie Williams, Steven R. Bartz, Andy Liaw, Yong Ma, Shirly Pinto, Karen O. Akinsanya, Stephen F. Previs, Yanqing Kan, Marija Tadin-Strapps, Steven J. Stout, Kristian K. Jensen, Ablatt Mahsut, James Hubert, David Coelho, Martin Koser, Gail Forrest, Kithsiri Herath, Satya Yendluri, Shubing Wang, and Sheng-Ping Wang
- Subjects
0301 basic medicine ,Male ,Small interfering RNA ,Simvastatin ,small interfering ribonucleic acid ,Gene Expression ,030204 cardiovascular system & hematology ,Biochemistry ,proprotein convertase subtilisin kexin type 9 ,chemistry.chemical_compound ,0302 clinical medicine ,Endocrinology ,RNA, Small Interfering ,Research Articles ,Hypolipidemic Agents ,Sterol Regulatory Element Binding Proteins ,Gene knockdown ,cardiometabolic disease ,biology ,SREBP cleavage-activating protein ,Intracellular Signaling Peptides and Proteins ,metabolic disease ,Lipids ,animal models ,drug therapy ,Liver ,Gene Knockdown Techniques ,Lipogenesis ,lipids/liver ,Female ,RNA Interference ,lipids (amino acids, peptides, and proteins) ,Proprotein Convertase 9 ,Signal Transduction ,medicine.medical_specialty ,lipid and lipoprotein metabolism ,QD415-436 ,03 medical and health sciences ,Internal medicine ,medicine ,Animals ,Humans ,RNA, Messenger ,Cholesterol ,dyslipidemia ,Membrane Proteins ,cholesterol ,Lipid metabolism ,Cell Biology ,Macaca mulatta ,Sterol regulatory element-binding protein ,Mice, Inbred C57BL ,030104 developmental biology ,chemistry ,Receptors, LDL ,LDL receptor ,biology.protein ,low density lipoprotein - Abstract
SREBP cleavage-activating protein (SCAP) is a key protein in the regulation of lipid metabolism and a potential target for treatment of dyslipidemia. SCAP is required for activation of the transcription factors SREBP-1 and -2. SREBPs regulate the expression of genes involved in fatty acid and cholesterol biosynthesis, and LDL-C clearance through the regulation of LDL receptor (LDLR) and PCSK9 expression. To further test the potential of SCAP as a novel target for treatment of dyslipidemia, we used siRNAs to inhibit hepatic SCAP expression and assess the effect on PCSK9, LDLR, and lipids in mice and rhesus monkeys. In mice, robust liver Scap mRNA knockdown (KD) was achieved, accompanied by dose-dependent reduction in SREBP-regulated gene expression, de novo lipogenesis, and plasma PCSK9 and lipids. In rhesus monkeys, over 90% SCAP mRNA KD was achieved resulting in approximately 75, 50, and 50% reduction of plasma PCSK9, TG, and LDL-C, respectively. Inhibition of SCAP function was demonstrated by reduced expression of SREBP-regulated genes and de novo lipogenesis. In conclusion, siRNA-mediated inhibition of SCAP resulted in a significant reduction in circulating PCSK9 and LDL-C in rodent and primate models supporting SCAP as a novel target for the treatment of dyslipidemia.
- Published
- 2016