1. System-wide transcriptome damage and tissue identity loss in COVID-19 patients.
- Author
-
Park J, Foox J, Hether T, Danko DC, Warren S, Kim Y, Reeves J, Butler DJ, Mozsary C, Rosiene J, Shaiber A, Afshin EE, MacKay M, Rendeiro AF, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AM, Hajirasouliha I, Beheshti A, Taylor D, Saravia-Butler A, Singh U, Wurtele ES, Schisler J, Fennessey S, Corvelo A, Zody MC, Germer S, Salvatore S, Levy S, Wu S, Tatonetti NP, Shapira S, Salvatore M, Westblade LF, Cushing M, Rennert H, Kriegel AJ, Elemento O, Imielinski M, Rice CM, Borczuk AC, Meydan C, Schwartz RE, and Mason CE
- Subjects
- Adult, Aged, Aged, 80 and over, COVID-19 metabolism, COVID-19 virology, Case-Control Studies, Cohort Studies, Female, Gene Expression Regulation, Humans, Influenza, Human genetics, Influenza, Human pathology, Influenza, Human virology, Lung metabolism, Male, Middle Aged, Orthomyxoviridae, RNA-Seq methods, Respiratory Distress Syndrome genetics, Respiratory Distress Syndrome microbiology, Respiratory Distress Syndrome pathology, Viral Load, COVID-19 genetics, COVID-19 pathology, Lung pathology, SARS-CoV-2, Transcriptome genetics
- Abstract
The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections., Competing Interests: O.E. is scientific adviser and equity holder in Freenome, Owkin, Volastra Therapeutics, and OneThree Biotech. R.E.S. is on the scientific advisory board of Miromatrix, Inc., and is a consultant and speaker for Alnylam, Inc. L.S. is a scientific co-founder and paid consultant. C.M. and E.E.A. are consultants for Onegevity Health. C.E.M. is a co-founder of Biotia and Onegevity Health and an advisor to Nanostring. T.H., S.W., Y.K., and J.R. are employees of Nanostring, Inc. All other authors declare no competing interests., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF