Esther Pacitti, François Tardieu, Christophe Pradal, Gaëtan Heidsieck, Patrick Valduriez, Daniel de Oliveira, Scientific Data Management (ZENITH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Universidade Federal Fluminense [Rio de Janeiro] (UFF), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, ANR-16-CONV-0004,DIGITAG,Institut Convergences en Agriculture Numérique(2016), ANR-11-INBS-0012,PHENOME,Centre français de phénomique végétale(2011), ANR-11-INBS-0013,IFB (ex Renabi-IFB),Institut français de bioinformatique(2011), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
International audience; Many scientific experiments today are performed using scientific workflows, which become more and more data-intensive. We consider the efficient execution of such workflows in a multisite cloud, leveraging heterogeneous resources available at multiple geo-distributed data centers. Since it is common for workflow users to reuse code or data from previous workflows, a promising approach for efficient workflow execution is to cache intermediate data in order to avoid re-executing entire workflows. However, caching intermediate data and scheduling workflows to exploit such caching in a multisite cloud is complex. In particular, workflow scheduling must be cache-aware, in order to decide whether reusing cache data or re-executing workflows entirely. In this paper, we propose a solution for cache-aware scheduling of scientific workflows in a multisite cloud. Our solution includes a distributed and parallel architecture and new algorithms for adaptive caching, cache site selection, and dynamic workflow scheduling. We implemented our solution in the OpenAlea workflow system, together with cache-aware distributed scheduling algorithms. Our experimental evaluation in a three-site cloud with a real application in plant phenotyping shows that our solution can yield major performance gains, reducing total time up to 42% with 60% of the same input data for each new execution.