1. Morphodynamics of a field of crescent-shaped rippled scour depressions: Northern Monterey Bay, CA.
- Author
-
Rosenberger, Kurt J., Storlazzi, Curt D., and Dartnell, Peter
- Subjects
- *
MORPHOLOGY , *HABITATS , *GEOPHYSICS , *SUBMARINE topography , *SEDIMENTS - Abstract
Abstract Despite the prevalence of rippled scour depression (RSD) on the world's continental shelves and their importance as nursery habitats for many commercially-important species, the processes responsible for their formation and geomorphic evolution are still not well understood. Most studies that focused on RSD evolution have been based on data acquired over multiple years to decades, and often during calmer summer months. Here, multiple geophysical seafloor mapping surveys of a field of RSD's off Santa Cruz, California, USA, were conducted over the course of two winters with distinctly different oceanographic forcing; these results were compared to time series oceanographic measurements made within the survey area, and put into the context of long-term trends from survey data collected during previous decades. Although the migration of these features across the seafloor occurs on decadal time scales, significant change was detected within a given year, depending on the wave climate and fluvial sediment input. RSDs shrank up to 16% or grew up to 28% in a span of a few months. Such change was predominantly the result of redistribution of fine-grained sediment input to the system by local rivers. Migration of the seafloor features appears to be the result of accumulation of fine-grained sediment at the boundary between the RSD and the surrounding fine-grained cap. Highlights • Repeat interferometric side-scan surveys reveal significant short-term variability in backscatter of a field of rippled scour depressions • Coupled measurements of oceanographic forcing indicate that riverine input and winter storm waves are responsible for short-term change • Migration of rippled scour depressions is more gradual, and appears to be due to both erosion and transport of fine-grained material by gentler summer swell and accumulation of fine-grained material input to the system by rivers. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF