1. Mineralogical and Chemical Characteristics of Sediments in the Lhasa River Basin: Implications for Weathering and Sediment Transport.
- Author
-
Zhang, Heyulu, Li, Tianning, Mao, Changping, Song, Zhengjin, and Rao, Wenbo
- Abstract
The Lhasa River, as one of the major rivers on the Tibetan Plateau, is of great value for the study of climate and environmental changes on the Tibetan Plateau. In this paper, the grain size and the mineralogical and geochemical characteristics of the sediments from the Lhasa River were investigated. The results show the following: (1) The average grain size of the Lhasa River sediments is coarse (65.5% sand, 23.6% silt), and the sorting is overall poor; the skewness is mostly positive, and the kurtosis is wide, which reflects the obvious characteristics of river sand deposition. (2) The mineral composition of the Lhasa River sediments is dominated by quartz (38.4%), feldspar, and plagioclase feldspar, followed by clay minerals, and the content of carbonate minerals is relatively low; the content of clay minerals in the illite content is as high as 83.3%, while the chlorite content is slightly higher than kaolinite, and smectite content is very low. The chemical index of illite is less than 0.4, indicating that illite is mainly iron-rich magnesium illite. (3) The value of the chemical weathering index (CIA) of the sediments is low, implying that the sediments are in a weak–moderate chemical weathering state and dominated by physical weathering. Comprehensive analyses further revealed that the weathering process of the sediments in the Lhasa River was influenced by both climate and lithology, i.e., sediment composition is influenced not only by chemical weathering in a dry, cold climate but also by physical weathering of granites exposed over large areas. The results of this study can provide scientific references for further in-depth research on the environmental and climatic effects of the Tibetan Plateau. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF