1. Antidiabetic and Anticancer Potentials of Mangifera indica L. from Different Geographical Origins.
- Author
-
Ahmad, Rizwan, Alqathama, Aljawharah, Aldholmi, Mohammed, Riaz, Muhammad, Abdalla, Ashraf N., Aljishi, Fatema, Althomali, Ebtihal, Amir, Mohd, Abdullah, Omeima, Alamer, Muntathir Ali, Alaswad, Deema, Alsulais, Wala, and Alsulays, Ahad
- Subjects
MANGO ,GLUTATHIONE peroxidase ,FRUIT seeds ,SEED treatment ,HYPOGLYCEMIC agents ,STATISTICAL models - Abstract
Mango fruit is well known for its nutritional and health benefits due to the presence of a plethora of phytochemical classes. The quality of mango fruit and its biological activities may change depending upon the variation in geographical factors. For the first time, this study comprehensively screened the biological activities of all four parts of the mango fruit from twelve different origins. Various cell lines (MCF7, HCT116, HepG2, MRC5) were used to screen the extracts for their cytotoxicity, glucose uptake, glutathione peroxidase activity, and α-amylase inhibition. MTT assays were carried out to calculate the IC
50 values for the most effective extracts. The seed part from Kenya and Sri Lanka origins exhibited an IC50 value of 14.44 ± 3.61 (HCT116) and 17.19 ± 1.60 (MCF7). The seed part for Yemen Badami (119 ± 0.08) and epicarp part of Thailand (119 ± 0.11) mango fruit showed a significant increase in glucose utilization (50 μg/mL) as compared to the standard drug metformin (123 ± 0.07). The seed extracts of Yemen Taimoor seed (0.46 ± 0.05) and Yemen Badami (0.62 ± 0.13) produced a significant reduction in GPx activity (50 μg/mL) compared to the control cells (100 μg/mL). For α-amylase inhibition, the lowest IC50 value was observed for the endocarp part of Yemen Kalabathoor (108.8 ± 0.70 μg/mL). PCA, ANOVA, and Pearson's statistical models revealed a significant correlation for the fruit part vs. biological activities, and seed part vs. cytotoxicity and α-amylase activity (p = 0.05). The seed of mango fruit exhibited significant biological activities; hence, further in-depth metabolomic and in vivo studies are essential to effectively utilize the seed part for the treatment of various diseases. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF