1. Full Waveform Inversion and the truncated Newton: quantitative imaging of complex subsurface structures
- Author
-
Métivier, Ludovic, Bretaudeau, François, Brossier, Romain, Operto, Stéphane, Virieux, Jean, Equations aux Dérivées Partielles (EDP), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Géoazur (GEOAZUR 6526), Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, and Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Optimization ,Seismic Imaging ,Newton method ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Full Waveform Inversion ,49M15 ,[SDE.MCG]Environmental Sciences/Global Changes ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] - Abstract
Submitted version.; Full Waveform Inversion (FWI) is a powerful tool for quantitative seismic imaging from wide-azimuth seismic data. The method is based on the minimization of the misfit between observed and simulated data. This amounts to the resolution of a large-scale nonlinear minimization problem. The inverse Hessian operator plays a crucial role in this reconstruction process. Accounting accurately for the effect of this operator within the minimization scheme should correct for illumination deficits, restore the amplitude of the subsurface parameters, and help to remove artifacts generated by energetic multiple reflections. Conventional preconditioned gradient-based minimization methods only roughly approximate the effect of this operator. We are interested in this study to another class of minimization methods, named as truncated Newton methods. These methods are based on the computation of the model update through a matrix-free conjugate gradient resolution of the Newton linear system. The aim of this study is to present a feasible implementation of this method for the FWI problem, based on a second-order adjoint state formulation for the computation of Hessian-vector products. We compare this method with the nonlinear conjugate gradient and the l-BFGS method within the context of 2D acoustic frequency FWI for the reconstruction of P-wave velocity models. Two test cases are investigated. The first is the synthetic BP 2004 model, representative of the Gulf Of Mexico geology with high velocity contrasts associated with the presence of salt structures. The second is a 2D real data-set from the Valhall oil field in North sea. These tests emphasize the interesting properties of the truncated Newton method regarding conventional optimization methods within the context of FWI.
- Published
- 2013