1. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite
- Author
-
Matteocci F., Cina L., Di Giacomo F., Razza S., Palma A. L., Guidobaldi A., D'Epifanio A., Licoccia S., Brown T. M., Reale A., Di Carlo A., Matteocci, F., Cina, L., Di Giacomo, F., Razza, S., Palma, A. L., Guidobaldi, A., D'Epifanio, A., Licoccia, S., Brown, T. M., Reale, A., and Di Carlo, A.
- Subjects
Electric resistance ,Solar module ,Photovoltaic cells ,Settore CHIM/07 - Fondamenti Chimici delle Tecnologie ,Photovoltaic modules ,double-step deposition ,perovskite solar module ,series-connected solar module ,Carrier mobility ,Conversion efficiency ,Deposition ,Efficiency ,Perovskite ,Double-step ,Halide perovskites ,Hole transport materials ,Poly (3-hexylthiophene) ,Series resistances ,Solid-state modules ,Settore ING-INF/01 - Elettronica ,double-step deposition, perovskite solar module, series-connected solar module - Abstract
We fabricated monolithic solid state modules based on organometal CH3NH3PbI3 and CH3NH3PbI3-xClx perovskites using poly-(3-hexylthiophene) and Spiro-OMeTAD as hole transport materials (HTMs). In particular, we developed innovative and scalable patterning procedures to minimize the series resistance at the integrated series-interconnections. By using these optimization steps, we reached a maximum conversion efficiency of 8.2% under AM1.5G at 1 Sun illumination conditions using the CH3NH3PbI3-xClx perovskite and the poly-(3-hexylthiophene) as HTM. Finally, we investigated the double-step deposition of CH3NH3PbI3 using the Spiro-OMeTAD, reaching a maximum conversion efficiency on active area (10.08 cm2) equal to 13.0% (9.1% on aperture area) under AM1.5G at 1 Sun illumination conditions. This remarkable result represents the highest PCE value reached for the perovskite solar modules.
- Published
- 2016