1. Alterations in insulin-signaling and coagulation pathways in platelets during hyperglycemia-hyperinsulinemia in healthy non-diabetic subject.
- Author
-
Rao AK, Freishtat RJ, Jalagadugula G, Singh A, Mao G, Wiles A, Cheung P, and Boden G
- Subjects
- Adult, Blood Coagulation Factors genetics, Blood Coagulation Factors metabolism, Cluster Analysis, Gene Expression Profiling methods, Gene Expression Regulation, Gene Regulatory Networks, Genetic Markers, Healthy Volunteers, Humans, Hyperglycemia diagnosis, Hyperglycemia genetics, Hyperinsulinism diagnosis, Hyperinsulinism genetics, Male, Monocytes metabolism, Oligonucleotide Array Sequence Analysis, RNA, Messenger blood, Real-Time Polymerase Chain Reaction, Time Factors, Blood Coagulation genetics, Blood Platelets metabolism, Hyperglycemia blood, Hyperinsulinism blood, Insulin blood, Signal Transduction genetics
- Abstract
Introduction: Diabetes mellitus (DM) is a prothrombotic and proinflammatory state. Hyperglycemia (HG) is encountered even in patients without DM. We have shown that combined HG and hyperinsulinemia (HI) in healthy non-diabetic subjects increased circulating tissue factor (TF) and thrombin generation. To understand the changes in platelet and monocyte pathways induced by combined HG and HI in healthy non-diabetic state, we performed whole genome expression profiling of leukocyte-depleted platelets and monocytes before and after 24 hours of combined HG (glucose ~200mg/dL) and HI by glucose infusion clamp in a healthy non-diabetic subject., Results: We defined time-dependent differential mRNA expression (24 versus 0 hour fold change (FC) ≥ 2) common to platelets and monocytes. Ingenuity Pathways Analysis revealed alterations in canonical insulin receptor signaling and coagulation pathways. A preliminary group of 9 differentially expressed genes was selected for qRT-PCR confirmation. Platelet 24 hour sample was compared to the 0 hour sample plus 4 controls. Five transcripts in platelets and 6 in monocytes were confirmed. Platelet GSK3B and PTPN1 were upregulated, and STXBP4 was downregulated in insulin signaling, and F3 and TFPI were upregulated in coagulation pathways. Monocyte, PIK3C3, PTPN11 and TFPI were downregulated. Platelet GSKβ3 and PTPN11 protein and TF antigen in platelets and monocytes was increased., Conclusions: Even in non-diabetic state, HG+HI for 24 hours induces changes in platelets and monocytes. They suggest downregulation of insulin signaling and upregulation of TF. Further studies are needed to elucidate cellular alterations leading to the prothrombotic and proinflammatory state in DM., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF