6 results on '"Genet, Marie"'
Search Results
2. The Influence of Cellulose Content on Tensile Strength in Tree Roots
- Author
-
Genet, Marie, Stokes, Alexia, Salin, Franck, Mickovski, Slobodan B., Fourcaud, Thierry, Dumail, Jean-François, and van Beek, Rens
- Published
- 2005
- Full Text
- View/download PDF
3. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei.
- Author
-
Genet, Marie, Li, Mingcai, Luo, Tianxiang, Fourcaud, Thierry, Clément-Vidal, Anne, and Stokes, Alexia
- Subjects
- *
CARBON in soils , *PLANT cell walls , *BOTANICAL chemistry , *PLANT mechanics , *FIR , *PLANT roots , *SLOPE stability , *CELLULOSE - Abstract
Background and Aims The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau. Methods Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. Key Results The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline. Conclusions Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
4. The influence of plant diversity on slope stability in a moist evergreen deciduous forest
- Author
-
Genet, Marie, Stokes, Alexia, Fourcaud, Thierry, and Norris, Joanne E.
- Subjects
- *
PLANT diversity , *SLOPE stability , *FORESTS & forestry , *ECOLOGICAL succession , *BAMBOO , *PLANT roots , *SHEAR (Mechanics) , *LANDSLIDES - Abstract
Abstract: The influence of plant diversity on slope stability was investigated at early phases of succession in a mixed forest in Sichuan, China. The first phase comprised big node bamboo (Phyllostachys nidularia Munro) only. In the second phase, bamboo co-existed with deciduous tree species and in the third phase, deciduous species existed alone. Root density at different depths and root tensile strength were determined for each species. The factor of safety (FOS) was calculated for slopes with and without vegetation for each succession phase. For phase 2, FOS was determined for different species mixtures and positions. In phase 3, simulations were performed with a single tree at the top, middle or toe of the slope. Due to its shallow root system, bamboo contributed little to slope stability. In simulations with the tree at the top or middle of the slope, FOS decreased because tree weight added a surcharge to the slope. FOS increased with the tree at the bottom of the slope. Different mixtures of species along the slope had no influence on FOS. Differences in root tensile strength between species played a small role in FOS calculations, and tree size and density were the most important factors affecting slope stability, excluding hydrological factors. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
5. Engineering ecological protection against landslides in diverse mountain forests: Choosing cohesion models
- Author
-
Mao, Zhun, Saint-André, Laurent, Genet, Marie, Mine, François-Xavier, Jourdan, Christophe, Rey, Hervé, Courbaud, Benoît, and Stokes, Alexia
- Subjects
- *
ECOLOGICAL engineering , *LANDSLIDES , *PLANT roots , *FIBER bundles (Mathematics) , *TENSILE strength , *PLANT growth , *HERBACEOUS plants , *META-analysis - Abstract
Abstract: Vegetation is increasingly used to protect artificial and natural slopes against shallow landslides. Mechanically, plant roots reinforce soil along a slope by providing cohesion (cr). cr is usually estimated using either of two models: a Wu and Waldron''s Model (WWM) or a Fiber Bundle Model (FBM). The WWM assumes that all fine and medium roots break simultaneously during shearing, whereas the FBM assumes progressive breakage of these roots. Both models are based on measurements of root density (RD), root tensile strength (Tr) and root orientation (Rf). RD is highly variable and influences cr significantly more than the other variables. We investigated RD in a mixed forest stand dominated by Fagus sylvatica and Abies alba growing at an altitude of 1400m and a mixed stand of Abies alba and Picea abies located at 1700m. We assumed that our sites were composed of different plant functional groups, i.e. (1) only trees and shrubs were present and (2) trees, shrubs and herbaceous plants coexisted within the same site. Results showed that RD was significantly influenced by soil depth, tree spatial density and species composition. cr was then estimated by the WWM and three different FBMs; each FBM differed in the manner that load was apportioned to the roots (as a function of root cross-sectional area (CSA), root diameter or number of intact roots). Results showed that c r values differed significantly depending on the model used: cr (FBM, root number)
- Published
- 2012
- Full Text
- View/download PDF
6. Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China
- Author
-
Ji, Jinnan, Kokutse, Nomessi, Genet, Marie, Fourcaud, Thierry, and Zhang, Zhiqiang
- Subjects
- *
PLANT roots , *SPATIAL variation , *BLACK locust , *SLOPE stability , *THUJA , *LANDSLIDES , *PLANT species - Abstract
Abstract: Vegetation is widely used for controlling shallow landslides. The mechanisms by which roots increase apparent soil cohesion is well documented and many values of root additional cohesion are available in the literature for different plant species. However, less information is given about the spatial variation of soil reinforcement by roots at a slope scale and its influence on slope stability, in particular in forest areas. The goal of this paper is to describe the spatial variability of root additional cohesion on two monospecific 17-y-old stands of Robinia pseudoacacia and Platycladus orientalis grown on slopes in the semiarid Loess Plateau of China, and to analyze numerically the effect of this variability on slopes stability. For this purpose, vertical trenches were dug at different distance and directions around trees situated at three different slope locations, i.e. up-, mid- and down-slope. Grids with a 10×10cm mesh were placed on vertical walls. Roots were counted within each grid cell and split according to their diameter class. Root area ratio (RAR) was estimated and compared among different positions around the trees and at three different locations along the slope. Roots tensile strength was determined with laboratory mechanical tests. RAR and root tensile strength were used as inputs in six different root reinforcement models to calculate root additional cohesion. A 2D finite element model of slope stability was developed and used to calculate the increase in factor of safety (FoS) due to root additional cohesion on rectilinear and terraced slopes. Results showed that both root tensile strength and Young''s modulus of R. pseudoacacia was about two times higher than tensile strength of P. orientalis. RAR distribution had a strong relationship with local soil moisture content measured in July during the raining season, and was significantly different with regards to tree location on the slope. The six theoretical models used to estimate the root additional cohesion gave different vertical profiles of root reinforcement distribution according to the underlying hypothesis on how forces are transferred to the roots. Theoretical analyses of slope stability showed that terraced slopes were 20% more stable than rectilinear slopes, disregarding the differences in hydrological regimes between these two terrain morphologies. Numerical sensitivity analyses also showed that the FoS reached an asymptotic value when increasing root additional cohesion. Actual additional cohesions of the two studied sites corresponded to FoS that were already close to this asymptotic values. Consequently variations of these actual root cohesions would not much affect slope stability. However it was showed that more attention should be given to the reinforcement of the bottom part of the actual slopes, where roots have a larger positive impact on the FoS. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.