1. Importance of soil ecoenzyme stoichiometry for efficient polycyclic aromatic hydrocarbon biodegradation.
- Author
-
Zhou X, Luo X, Liu K, Zheng T, Ling P, Huang J, Chen W, and Huang Q
- Subjects
- Phenanthrenes metabolism, Kinetics, Biodegradation, Environmental, Polycyclic Aromatic Hydrocarbons metabolism, Polycyclic Aromatic Hydrocarbons chemistry, Soil Pollutants metabolism, Soil Microbiology, Soil chemistry
- Abstract
Efficient remediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is challenging. To determine whether soil ecoenzyme stoichiometry influences PAH degradation under biostimulation and bioaugmentation, this study initially characterized soil ecoenzyme stoichiometry via a PAH degradation experiment and subsequently designed a validation experiment to answer this question. The results showed that inoculation of PAH degradation consortia ZY-PHE plus vanillate efficiently degraded phenanthrene with a K value of 0.471 (depending on first-order kinetics), followed by treatment with ZY-PHE and control. Ecoenzyme stoichiometry data revealed that the EEA
C:N , vector length and angle increased before day five and decreased during the degradation process. In contrast, EEAN:P decreased and then increased. These results indicated that the rapid PAH degradation period induced more C limitation and organic P mineralization. Correlation analysis indicated that the degradation rate K was negatively correlated with vector length, EEAC:P , and EEAN:P , suggesting that C limitation and relatively less efficient P mineralization could inhibit biodegradation. Therefore, incorporating liable carbon and acid phosphatase or soluble P promoted PAH degradation in soils with ZY-PHE. This study provides novel insights into the relationship between soil ecoenzyme stoichiometry and PAH degradation. It is suggested that soil ecoenzyme stoichiometry be evaluated before designing bioremeiation stragtegies for PAH contanminated soils., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF