1. Embryoid Body Differentiation of Mouse Embryonic Stem Cells into Neurectoderm and Neural Progenitors.
- Author
-
Shparberg RA, Glover HJ, and Morris MB
- Subjects
- Animals, Cell Line, Embryoid Bodies cytology, Embryonic Development physiology, Mammals physiology, Mice, Nervous System cytology, Neurogenesis physiology, Cell Differentiation physiology, Mouse Embryonic Stem Cells cytology, Neural Plate cytology, Neurons cytology, Stem Cells cytology
- Abstract
Mouse embryonic stem cells (mESCs) are pluripotent cells capable of differentiating in vitro to form the ~200 types of cells of the developing embryo and adult, including cells of the nervous system. This makes mESCs a useful tool for studying the molecular mechanisms of mammalian embryonic development. Many protocols involving the use of growth factors and small molecules to differentiate mESCs into neural progenitors and neurons currently exist. However, there is a paucity of protocols available that recapitulate the developmental process. Our laboratory has developed a protocol to recapitulate mammalian neural lineage development by differentiating mESCs to mature neurons via intermediate cell populations observed during in vivo embryo development. This protocol uses the amino acid L-proline to direct the differentiation of mESCs, grown as embryoid bodies, into Sox1
+ neurectoderm, followed by differentiation to form Nestin+ , BLBP+ , and NeuN+ neural cell types.- Published
- 2019
- Full Text
- View/download PDF