7 results on '"Hopp, H. Esteban"'
Search Results
2. Single nucleotide polymorphism genotyping by heteroduplex analysis in sunflower (Helianthus annuus L.)
- Author
-
Fusari, Corina M., Lia, Verónica V., Nishinakamasu, Verónica, Zubrzycki, Jeremías E., Puebla, Andrea F., Maligne, Alberto E., Hopp, H. Esteban, Heinz, Ruth A., and Paniego, Norma B.
- Published
- 2011
- Full Text
- View/download PDF
3. Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis
- Author
-
Fernandez, Paula, Di Rienzo, Julio A., Moschen, Sebastián, Dosio, Guillermo A. A., Aguirrezábal, Luis A. N., Hopp, H. Esteban, Paniego, Norma, and Heinz, Ruth A.
- Published
- 2011
- Full Text
- View/download PDF
4. Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.)
- Author
-
Zavallo, Diego, Lopez Bilbao, Marisa, Hopp, H. Esteban, and Heinz, Ruth
- Published
- 2010
- Full Text
- View/download PDF
5. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce.
- Author
-
Darqui, Flavia Soledad, Radonic, Laura Mabel, Beracochea, Valeria Cecilia, Hopp, H. Esteban, and López Bilbao, Marisa
- Subjects
CHRYSANTHEMUMS ,ASTERACEAE ,WILD flowers ,WHOLE genome sequencing ,SPECIES ,SUNFLOWERS ,PLANT molecular biology - Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.).
- Author
-
Paniego, Norma, Echaide, Mercedes, Muñoz, Marianne, Fernández, Luis, Torales, Susana, Faccio, Paula, Fuxan, Irma, Carrera, Mónica, Zandomeni, Rubén, Suárez, Enrique Y, and Hopp, H Esteban
- Subjects
MICROSATELLITE repeats ,GENETIC markers ,SUNFLOWERS ,PLANT species diversity ,GENETIC polymorphisms - Abstract
Development of microsatellite markers for sunflower (Helianthus annuus L.) was performed to estimate their frequency, nature (structure), levels of polymorphism, usefulness for genotype identification, and calculation of genetic relationships between inbred lines representing the species diversity. Isolation was performed from a small-insert genomic library followed by hybridization screening using oligonucleotide probes containing different nucleotide arrays. In this work, 503 unique microsatellite clones were sequenced and 271 PCR primer sequences bordering the microsatellite repeat were designed. For polymorphism assessment, 16 H. annuus germplasm accessions were checked and 170 of the primers tested were shown to be polymorphic for the selected lines. The polymorphic microsatellites produced an average of 3.5 alleles/locus and an average polymorphism information content (PIC) of 0.55. The most frequently found motifs within polymorphic simple-sequence repeats (SSRs) were: (GA)[sub n] , (GT)[sub n] , (AT)[sub n] , followed by trinucleotides (ATT)[sub n] , (TGG)[sub n] and (ATC)[sub n] , and the tetranucleotide (CATA)[sub n] . Most of the 170 SSRs obtained showed important differences in the 16 reference inbred lines used for their characterization. In this work, 20 of the most informative SSRs destined to sunflower genotyping and legal fingerprinting purposes are fully described.Key words: sunflower, molecular markers, microsatellites, simple-sequence repeats.Le développement et caractérisation de marqueurs microsatellites chez le tournesol (Helianthus annuus) ont été accomplis pour estimer leur fréquence, naturesse (structure), niveau du polymorphisme, utilité pour l'identification et calcule des relations génétiques entre lignées endocries qui représentent la diversité génétique du tournesol. L'isolement a été accompli en utilisant une banque génomique de petits inserts de tournesol. Dans ce but, le criblage basé sur l'hybridation a été effectué en utilisant des sondes oligonucléotidiques composées de différents arrangements de nucléotides. 503 clones microsatellites positifs ont été séquences et 271 séquences d'amorces adjacentes à ces microsatellites ont été synthétisées. Pour l'évaluation du polymorphisme, 16 sources de accessions du H. annuus ont été vérifiées et 170 des amorces testées ont montré un polymorphisme pour les lignées étudiées. Les microsatellites polymorphiques ont produit une moyenne de 3.5 allèles par gène et une moyenne de 0.5 PIC (contenu en information de polymorphisme). Les motifs les plus fréquemment trouvés dans les SSR polymorphes étaient: (GA)[sub n] , (GT)[sub n] , (AT)[sub n] , suivis des trinucléotides (ATT)[sub n] , (TGG)[sub n] et (ATC)[sub n] et du tetranucléotide (CATA)[sub n] . La majeure partie des 170 séquence simple répétitive (SSR) obtenues ont montré des différences importantes dans les 16 lignées pures de référence utilisées pour sa caractérisation, 20 des SSR les plus instructives en termes d'information destinée à la détermination de génotypes de tournesol, et d'empreintes digitales dans un but légal, sont amplement décrits dans ce travail.Mots clés : tournesol, marqueur moléculaire, microsatellites, séquence simple répétitive.[Traduit par la Rédaction] [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
7. New strategies for the transformation and expression of genes of interest in sunflower
- Author
-
Radonic, Laura Mabel, Hopp, H. Esteban, Hopp, Horacio Esteban (director), and Lopez Bilbao, Marisa Gisela (co-directora)
- Subjects
SELECTION ,Expresión Génica ,Selección ,Vectores ,Gene Expression ,SELECCION ,SUNFLOWER ,Vectors ,Genética ,Helianthus Annuus ,TRANSFORMATION ,AGROINFILTRATION ,PROMOTERS ,PROMOTORES ,GIRASOL ,Genetics ,TRANSFORMACION ,AGROINFILTRACION ,Agroinfiltración - Abstract
Tesis para obtener el grado de Doctora en el área de Ciencias Biológicas, de la Universidad de Buenos Aires, en 2010 El girasol es una especie de la familia Asteraceae (Compositae) de gran importancia económica, considerada hasta hace una década recalcitrante al cultivo in vitro y la transformación genética. En un trabajo previo (Radonic, 2005) se logró establecer el protocolo de selección por enraizamiento en kanamicina con una eficiencia del 0,7 %. En esta tesis se mejoró este protocolo utilizando una construcción portadora de los genes antifúngicos glucanasa y quitinasa, ambos bajo el control del promotor CaMV35S y el enhancer Ω del TMV, obteniéndose una eficiencia de 1,26 %, al aumentar gradualmente la concentración del antibiótico kanamicina en los sucesivos medios de regeneración. También se evaluó la especificidad y estabilidad de dos vectores conteniendo la construcción CaMV35S-secuencia codificante para la β-glucuronidasa (GUS)-interrumpida por un intrón. Las plantas T1 derivadas de los eventos de transformación presentaron un patrón de expresión de tipo no constitutivo, con expresión de GUS localizada exclusivamente en los tricomas de las nervaduras de la cara abaxial de las hojas, siendo necesario la utilización de lupa para su visualización. En las plantas T2 no se pudo detectar la presencia de los transgenes. El nivel bajo de expresión es similar al descripto en crisantemo y la inestabilidad génica obtenida con este mismo promotor fue también descripta en lechuga, ambas de la familia Asteraceae. Estos datos llevaron a la búsqueda de nuevos promotores para la transformación de girasol. Los promotores ensayados fueron CaMV35S-Ω TMV, PPC, nos, 2X35S y rbcS1. Estos promotores fueron incorporados en el vector Gateway pKGWFS7,0, diseñado para el análisis de promotores regulando, en todos los casos, la expresión del gen reportero GUS. Este vector, además posee el gen nptII de resistencia a kanamicina bajo la regulación del promotor nos. Para analizar la funcionalidad de las construcciones obtenidas se realizaron ensayos de agroinfiltración de Nicotiana benthamiana. La actividad de los promotores en girasol fue evaluada mediante ensayos de agroinfiltración en hojas de plantas en invernáculo y la evaluación temprana de los explantos blanco de transformación, por determinación histoquímica de GUS y cuantificación fluorométrica de MUG. Para los ensayos de agroinfiltración de girasol se logró establecer un protocolo, considerado hasta este momento como no factible, determinando el estadio de desarrollo de la planta, la cepa bacteriana a utilizar y el tiempo de análisis. Estos análisis permitieron seleccionar al promotor rbcS1 como el más adecuado, ya que presentó buenos niveles de actividad enzimática y, a diferencia del promotor CaMV35S-Ω TMV, se expresó mayoritariamente en la zona meristemática de los explantos blanco de transformación, región a partir de la cual se regeneran los brotes. Los resultados obtenidos en los ensayos de transformación estable mostraron que el uso del promotor rbcS1, en comparación al CaMV35S-Ω TMV, no solo aumentó los niveles de expresión de GUS (donde grandes regiones del mesófilo mostraron expresión) sino que modificó la expresión del gen nptII, mejorando notoriamente la eficiencia de transformación (aumentando de 1,26 % a 7,06 %). Además, mejoró la respuesta y el aspecto de las plantas obtenidas (T0) al ser transferidas al invernáculo (tanto por pasaje a tierra directo como por injerto), siendo éstas de gran porte y con capítulos florales más grandes, que resultaron en un aumento del número y tamaño de los aquenios obtenidos. Resultados similares fueron publicados en Arabidopsis donde el promotor CaMV35S afectaba y alteraba en trans el patrón de expresión de transgenes y cambiaba el fenotipo de las plantas transgénicas. El análisis de las plantas T1 permitió observar altos niveles de expresión del gen reportero, comparable al de otras especies vegetales. Los resultados expuestos muestran que es posible transformar girasol con buenos niveles de eficiencia y expresión. The sunflower is a species from the Asteraceae family of great economic importance, considered recalcitrant to in vitro culture and genetic transformation until a decade ago. In a previous work (Radonic, 2005) it was possible to establish a selection protocol by rooting in kanamycin with an efficiency of 0,7 %. In this thesis this protocol was improved using a construct carrying glucanase and chitinase antifungal genes, both under the CaMV35S promoter and TMV enhancer Ω, obtaining an efficiency of 1,26 % by gradually increasing kanamycin concentration in the successive regeneration media. The specificity and stability of two vectors containing the construct CaMV35S- β- glucuronidase codifying sequence (GUS)-interrumpted by an intron was also evaluated. The T1 plants derived from the transformation events showed a non-constitutive expression pattern, with GUS expression located only in the trichomes of the leaf veins on the abaxial surface of leaves, for its visualization it was necessary to use a magnifying glass. Detection of transgenes was not possible in T2 plants. This low expression level is similar to that described in chrysanthemum and the genetic instability achieved with the same promoter was also described in lettuce, both of the Asteraceae family. These data led to the search for new promoters for sunflower transformation. CaMV35S-Ω TMV, PPC, nos, rbcS1 and 2X35S promoters were assayed. These promoters were incorporated in pKGWFS7,0 Gateway vector, which is designed for promoter analysis regulating, in all cases, GUS reporter gene expression. This vector, also has the nptII kanamycin resistance gene under the regulation of nos promoter. Agroinfiltration assays in Nicotiana benthamiana in order to analyze de functionality of the obtained constructs were performed. Promoter activity in sunflower was evaluated in leaf agroinfiltration assays in greenhouse plants and early evaluation of the transformation target explants, by GUS histochemical determination and MUG fluorometric cuantification. A sunflower agroinfiltration protocol was established, until this moment considered not feasible, by determining the developmental plant stage, the bacterial strain used and the time of analysis. These analysis allowed to select rbcS1 promoter as the most suitable, as it showed good enzymatic activity levels and, unlike the CaMV35S-Ω TMV promoter, it is mostly expressed in the meristematic zone from the transformation target explants, region from which shoots regenerate. Results obtained in stable transformation assays showed that the use of rbcS1 promoter, compared with CaMV35S-Ω TMV promoter, not only increased GUS expression levels (where large regions of the mesophyll showed expression) but modified nptII gene expression, greatly improving transformation efficiency (which increased from 1,26 % to 7,06 %). Moreover, response and aspect of the obtained plants (T0) was improved when they were transferred to the greenhouse (both by direct passage to earth or grafting), they were large- sized and with larger floral chapters, resulting in an increase in the number and size of the obtained achenes. Similar results were published in Arabidopsis where the CaMV35S promoter affected and altered in trans transgene pattern expression and changed transgenic plants phenotype. T1 plants analysis allowed to observe high levels of reporter gene expression, comparable to that of other plant species. The above results show that it is possible to transform sunflower with good levels of efficiency and expression. Instituto de Biotecnología Fil: Radonic, Laura Mabel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.