The development of cotton fabrics with special properties such as superhydrophobicity, self-cleaning, oil/water separation, anti-bacterial activity and blood repellency without compromising its intrinsic properties such as flexibility, breathability, comfort, and biodegradability is quite challenging task. In this study, a simple and environmentally friendly approach was used to fabricate superhydrophobic cotton fabric by introducing chitosan-based composite coatings over cotton fabric. The surface properties of the cotton samples were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The prepared cotton fabrics showed excellent superhydrophobicity with a water contact angle of 154.4° and also possess excellent antibacterial activity against Gram positive and negative bacteria with inhibition zone of 16 mm and 22 mm in disk diffusion method and shake flask method results revealed that the chitosan-PAni-ZnO-STA coated cotton effectively inhibits the bacterial growth. Furthermore, the self-cleaning, blood repellency and oil-water separation performance of cotton fabric were also performed to examine the feasibility of as-modified cotton in both environmental and clinical applications. [Display omitted] • Composite coating of chitosan-polyaniline, ZnO and stearic acid coated over cotton. • Coated fabric possesses excellent superhydrophobicity and self-cleaning property. • Coated fabric controls bacterial growth & showed good antibacterial activity. • Modified fabric efficiently separates the oil-water mixture by filtration process. • The proposed fabrication method is economically and environmentally friendly. [ABSTRACT FROM AUTHOR]