1. Preparation of Durable Superhydrophobic Coatings Based on Discrete Adhesives.
- Author
-
Liu, Xuejuan, Zhou, Zhiguo, Chen, Ming, Liu, Zheng, Jiang, Shuhui, and Wang, Lei
- Subjects
SURFACE coatings ,CONTACT angle ,DRAG reduction ,ADHESIVES ,SILICA nanoparticles ,ADHESIVE tape - Abstract
Due to the low adhesion observed at the interface between solid and liquid, superhydrophobic coatings hold significant promise for various applications, such as self-cleaning, anti-corrosion, anti-icing, and drag reduction. However, a notable challenge hindering their widespread adoption in these domains lies in their delicate durability. In this study, we propose a straightforward method for preparation. The fluorosilicone resin is initially discretized through a gradual introduction of nonsolvent into its solution, followed by thorough mixing and stirring with silica nanoparticles. The resulting mixture is then sprayed onto the substrate surface after drying, forming a self-similar, porous, and rough structure extending from top to bottom. This process yields a coating exhibiting excellent chemical and mechanical durability simultaneously. Using this approach, we achieved a superhydrophobic coating with a contact angle of 156° and a roll angle of 2.2°, with water droplet adhesion of only 10.8 ± 0.4 µN. Remarkably, the coating maintained excellent superhydrophobicity even after undergoing sandpaper abrasion (10 m), tape peeling (30 times), and prolonged water impact (60 min), showing its robust mechanical stability. Furthermore, following exposure to acid, alkali, and aqueous solutions (7 days), UV irradiation (10 days), and extreme temperature variations (–20 °C to 80 °C), the coatings retained their superhydrophobic properties and exhibited good chemical durability. This method offers a novel approach to enhance the durability and practicality of superhydrophobic coatings. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF