1. Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure.
- Author
-
Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N, Halbgebauer R, Groß R, Barth T, Lechel A, Walter BM, Kraus JM, Wiegreffe C, Grimm J, Scheffold A, Schneider MR, Peuker K, Zeißig S, Britsch S, Rose-John S, Vettorazzi S, Wolf E, Tannapfel A, Steinestel K, Reber SO, Walther P, Kestler HA, Radermacher P, Barth TF, Huber-Lang M, Kleger A, and Seufferlein T
- Subjects
- Animals, Disease Models, Animal, Female, Fetal Proteins genetics, Inflammatory Bowel Diseases etiology, Inflammatory Bowel Diseases genetics, Inflammatory Bowel Diseases pathology, Interleukin-6 genetics, Interleukin-6 metabolism, Intestines pathology, Mice, Multiple Organ Failure etiology, Multiple Organ Failure genetics, Multiple Organ Failure pathology, Multiple Trauma complications, Multiple Trauma genetics, Multiple Trauma pathology, Protein-Tyrosine Kinases genetics, STAT3 Transcription Factor genetics, STAT3 Transcription Factor metabolism, Swine, Systemic Inflammatory Response Syndrome etiology, Systemic Inflammatory Response Syndrome pathology, Transcription Factor RelA genetics, Transcription Factor RelA metabolism, Tumor Necrosis Factor-alpha genetics, Tumor Necrosis Factor-alpha metabolism, Fetal Proteins metabolism, Inflammatory Bowel Diseases enzymology, Intestines enzymology, Multiple Organ Failure enzymology, Multiple Trauma enzymology, Protein-Tyrosine Kinases metabolism, Systemic Inflammatory Response Syndrome enzymology
- Abstract
Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.
- Published
- 2018
- Full Text
- View/download PDF