1. Advanced characterization techniques for nanostructured materials in biomedical applications
- Author
-
Praveenkumara Jagadeesh, Sanjay Mavinkere Rangappa, and Suchart Siengchin
- Subjects
Nanostructures ,Characterization techniques ,Biomedical applications ,Spectroscopy ,Microscopy ,Morphology ,Polymers and polymer manufacture ,TP1080-1185 ,Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
Recent advancements in nanostructured materials have found widespread application across many domains, particularly in the biomedical field. Before using nanostructured materials in clinical applications, many important challenges, especially those related to their uses in biomedicine, must be resolved. Biological activity, compatibility, toxicity, and nano-bio interfacial characteristics are some of the major problems in biomedicine. We may therefore investigate the nanostructured materials for biomedical applications with the aid of modern characterization techniques. This overview article illustrates the present state of nanostructured materials in the biomedical field with uses and the importance of characterization methods through the use of cutting-edge characterization techniques. In this article, the techniques for analysing the topology of nanostructures, including Field Emission Scanning Electron Microscopy (FESEM), Dynamic Light Scattering (DLS), Scanning Probe Microscopy (SPM), Near-field Scanning Optical Microscopy (NSOM), and Confocal microscopy, are described. In addition, the internal structural investigation techniques X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Magnetic Resonance Force Microscopy (MRFM) are discussed. In addition, composition analysis techniques such as X-ray Photoelectron Spectroscopy (XPS), Energy Dispersive X-ray spectroscopy (EDS), Auger Electron Spectroscopy (AES), and Secondary Ion Mass Spectroscopy (SIMS) have been discussed. The essence of the nanomaterials as they relate to physics, chemistry, and biology is thoroughly explained in this overview along with characterization techniques through case studies. Additionally, the constraints and difficulties with specimen and analysis that are related to comprehending nanostructured materials have been identified and addressed in this study.
- Published
- 2024
- Full Text
- View/download PDF