1. Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes.
- Author
-
Farrell K, Humphrey J, Chang T, Zhao Y, Leung YY, Kuksa PP, Patil V, Lee WP, Kuzma AB, Valladares O, Cantwell LB, Wang H, Ravi A, De Sanctis C, Han N, Christie TD, Afzal R, Kandoi S, Whitney K, Krassner MM, Ressler H, Kim S, Dangoor D, Iida MA, Casella A, Walker RH, Nirenberg MJ, Renton AE, Babrowicz B, Coppola G, Raj T, Höglinger GU, Müller U, Golbe LI, Morris HR, Hardy J, Revesz T, Warner TT, Jaunmuktane Z, Mok KY, Rademakers R, Dickson DW, Ross OA, Wang LS, Goate A, Schellenberg G, Geschwind DH, Crary JF, and Naj A
- Subjects
- Humans, Aged, Male, Female, Transcriptome, Polymorphism, Single Nucleotide, Neuroglia metabolism, Neuroglia pathology, Aged, 80 and over, Oligodendroglia metabolism, Oligodendroglia pathology, Middle Aged, Alzheimer Disease genetics, Alzheimer Disease pathology, Alzheimer Disease metabolism, Case-Control Studies, Myelin Proteins, Supranuclear Palsy, Progressive genetics, Supranuclear Palsy, Progressive pathology, Supranuclear Palsy, Progressive metabolism, Genome-Wide Association Study, Quantitative Trait Loci, Genetic Predisposition to Disease, tau Proteins genetics, tau Proteins metabolism
- Abstract
Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10
-8 ) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson's disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF