1. PI-2620 Lead Optimization Highlights the Importance of Off-Target Assays to Develop a PET Tracer for the Detection of Pathological Aggregated Tau in Alzheimer's Disease and Other Tauopathies.
- Author
-
Kroth H, Oden F, Molette J, Schieferstein H, Gabellieri E, Mueller A, Berndt M, Sreenivasachary N, Serra AM, Capotosti F, Schmitt-Willich H, Hickman D, Pfeifer A, Dinkelborg L, and Stephens A
- Subjects
- Animals, Case-Control Studies, Drug Design, Female, Heterocyclic Compounds chemistry, Heterocyclic Compounds pharmacology, Humans, Macaca mulatta, Mice, Molecular Structure, Monoamine Oxidase chemistry, Protein Binding, Structure-Activity Relationship, Alzheimer Disease diagnostic imaging, Positron-Emission Tomography, Radioactive Tracers, Tauopathies diagnostic imaging, tau Proteins chemistry
- Abstract
The first candidate PI-2014 was tested in healthy controls and subjects with Alzheimer's disease (AD). As PI-2014 displayed off-target binding to monoamine oxidase A (MAO-A), a new lead with improved binding to Tau and decreased MAO-A binding was required. For compound optimization, Tau binding assays based on both human AD brain homogenate and Tau-paired helical filaments were employed. Furthermore, two MAO-A screening assays based on (1) human-recombinant MAO-A and (2) displacement of 2-fluoro-ethyl-harmine from mouse brain homogenate were employed. Removing the N -methyl group from the tricyclic core resulted in compounds displaying improved Tau binding. For the final round of optimization, the cyclic amine substituents were replaced by pyridine derivatives. PI-2620 (2-(2-fluoropyridin-4-yl)-9 H -pyrrolo[2,3- b :4,5- c ']dipyridine) emerged as a best candidate displaying high Tau binding, low MAO-A binding, high brain uptake, and fast and complete brain washout. Furthermore, PI-2620 showed Tau binding on brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick's disease.
- Published
- 2021
- Full Text
- View/download PDF