1. Drags: A compositional algebraic framework for graph rewriting
- Author
-
Jean-Pierre Jouannaud, Nachum Dershowitz, Tel Aviv University (TAU), Deduction modulo, interopérabilité et démonstration automatique (DEDUCTEAM), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Spécification et Vérification (LSV), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Deducteam, and Tel Aviv University [Tel Aviv]
- Subjects
Vertex (graph theory) ,General Computer Science ,Computer science ,Generalization ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Term algebra ,ACM: G.: Mathematics of Computing ,Theoretical Computer Science ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Drags ,0202 electrical engineering, electronic engineering, information engineering ,[INFO]Computer Science [cs] ,Algebraic number ,Graph rewriting ,symmetric monoidal category ,Symmetric monoidal category ,Function (mathematics) ,Graph ,rewriting ,Vertex (geometry) ,Algebra ,010201 computation theory & mathematics ,Computer Science::Programming Languages ,020201 artificial intelligence & image processing ,Rewriting ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Graphs ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
International audience; We are interested in a natural generalization of term-rewriting techniques to what we call drags, viz. finite, directed, ordered, rooted multigraphs, each vertex of which is labeled by a function symbol. To this end, we develop a rich algebra of drags that generalizes the familiar term algebra and its associated rewriting capabilities. Viewing graphs as terms provides an initial building block for rewriting with such graphs, one that should impact the many areas where computations take place on graphs.
- Published
- 2019
- Full Text
- View/download PDF