Christophe Alias, Sanjay Rajopadhye, Guillaume Iooss, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), CASH - Compilation and Analysis, Software and Hardware (CASH), Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), Colorado State University [Fort Collins] (CSU), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Compiler Optimization and Run-time Systems (CORSE), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Département d'informatique - ENS Paris (DI-ENS)
International audience; Tiling is a crucial program transformation, adjusting the ops-to-bytes balance of codes to improve locality. Like parallelism, it can be applied at multiple levels. Allowing tile sizes to be symbolic parameters at compile time has many benefits, including efficient autotuning, and run-time adaptability to system variations. For polyhedral programs, parametric tiling in its full generality is known to be non-linear, breaking the mathematical closure properties of the polyhedral model. Most compilation tools therefore either perform fixed size tiling, or apply parametric tiling in only the final, code generation step.We introduce monoparametric tiling, a restricted parametric tiling transformation. We show that, despite being parametric, it retains the closure properties of the polyhedral model. We first prove that applying monoparametric partitioning (i) to a polyhedron yields a union of polyhedra with modulo conditions, and (ii) to an affine function produces a piecewise-affine function with modulo conditions. We then use these properties to show how to tile an entire polyhedral program. Our monoparametric tiling is general enough to handle tiles with arbitrary tile shapes that can tessellate the iteration space (e.g., hexagonal, trapezoidal, etc). This enables a wide range of polyhedral analyses and transformations to be applied.