1. Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs.
- Author
-
Park H, Collignon AM, Lepry WC, Ramirez-GarciaLuna JL, Rosenzweig DH, Chaussain C, and Nazhat SN
- Subjects
- Animals, Collagen, Gels, Glass, Humans, Mice, Silicon Dioxide, Stem Cells, Osteogenesis, Tissue Scaffolds
- Abstract
Dense collagen (DC) gels facilitate the osteoblastic differentiation of seeded dental pulp stem cells (DPSCs) and undergo rapid acellular mineralization when incorporated with bioactive glass particles, both in vitro and subcutaneously in vivo. However, the potential of DC-bioactive glass hybrid gels in delivering DPSCs for bone regeneration in an osseous site has not been investigated. In this study, the efficacies of both acellular and DPSC-seeded DC-S53P4 bioactive glass [(53)SiO
2 -(23)Na2 O-(20)CaO-(4)P2 O5 , wt%] hybrid gels were investigated in a critical-sized murine calvarial defect. The incorporation of S53P4, an osteostimulative bioactive glass, into DC gels led to its accelerated acellular mineralization in simulated body fluid (SBF), in vitro, where hydroxycarbonated apatite was detected within 1 day. By day 7 in SBF, micro-mechanical analysis demonstrated an 8-fold increase in the compressive modulus of the mineralized gels. The in-situ effect of the bioactive glass on human-DPSCs within DC-S53P4 was evident, by their osteogenic differentiation in the absence of osteogenic supplements. The production of alkaline phosphatase and collagen type I was further increased when cultured in osteogenic media. This osteostimulative effect of DC-S53P4 constructs was confirmed in vivo, where after 8 weeks implantation, both acellular scaffolds and DPSC-seeded DC-S53P4 constructs formed mineralized and vascularized bone matrices with osteoblastic and osteoclastic cell activity. Surprisingly, however, in vivo micro-CT analysis confirmed that the acellular scaffolds generated larger volumes of bone, already visible at week 3 and exhibiting superior trabecular architecture. The results of this study suggest that DC-S53P4 scaffolds negate the need for stem cell delivery for effective bone tissue regeneration and may expedite their path towards clinical applications., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF