1. Tumor irradiation in mice with a laser-accelerated proton beam
- Author
-
Kroll, F., Brack, F.-E., Bernert, C., Bock, S., Bodenstein, E., Brüchner, K., Cowan, T., Gaus, L., Gebhardt, R., Helbig, U., Karsch, L., Kluge, T., Kraft, S., Krause, M., Leßmann, E., Masood, U., Meister, S., Metzkes-Ng, J., Nossula, A., Pawelke, J., Pietzsch, J., Püschel, T., Reimold, M., Rehwald, M., Richter, C., Schlenvoigt, H.-P., Schramm, U., Umlandt, M. E. P., Ziegler, T., Zeil, K., and Beyreuther, E.
- Subjects
TNSA ,Radiobiology ,Laser acceleration ,FLASH - Abstract
Recent oncological studies identified beneficial properties of radiation applied at ultra-high dose rates several orders of magnitude higher than the clinical standard of the order of Gy/min. Sources capable of providing these ultra-high dose rates are under investigation. Here, we show that a stable, compact laser-driven proton source with energies greater than 60 MeV enables radiobiological in vivo studies. We performed a pilot irradiation study on human tumors in a mouse model, showing the concerted preparation of mice and laser accelerator, the dose-controlled, tumor-conform irradiation using a laser-driven as well as a clinical reference proton source, and the radiobiological evaluation of irradiated and unirradiated mice for radiation-induced tumor growth delay. The prescribed homogeneous dose of 4 Gy was precisely delivered at the laser-driven source. The results demonstrate a complete laser-driven proton research platform for diverse user-specific small animal models, able to deliver tunable single-shot doses up to around 20 Gy to millimeter-scale volumes on nanosecond time scales, equivalent to around 1E9 Gy/s, spatially homogenized and tailored to the sample. The platform provides a unique infrastructure for translational research with protons at ultra-high dose rate.
- Published
- 2022