1. Crosstalk reduction for high-frequency linear-array ultrasound transducers using 1-3 piezocomposites with pseudo-random pillars.
- Author
-
Yang HC, Cannata J, Williams J, and Shung KK
- Subjects
- Ceramics, Electric Impedance, Equipment Design, Transducers, Ultrasonography instrumentation
- Abstract
The goal of this research was to develop a novel diced 1-3 piezocomposite geometry to reduce pulse-echo ring down and acoustic crosstalk between high-frequency ultrasonic array elements. Two PZT-5H-based 1-3 composites (10 and 15 MHz) of different pillar geometries [square (SQ), 45° triangle (TR), and pseudo-random (PR)] were fabricated and then made into single-element ultrasound transducers. The measured pulse-echo waveforms and their envelopes indicate that the PR composites had the shortest -20-dB pulse length and highest sensitivity among the composites evaluated. Using these composites, 15-MHz array subapertures with a 0.95λ pitch were fabricated to assess the acoustic crosstalk between array elements. The combined electrical and acoustical crosstalk between the nearest array elements of the PR array subapertures (-31.8 dB at 15 MHz) was 6.5 and 2.2 dB lower than those of the SQ and the TR array subapertures, respectively. These results demonstrate that the 1-3 piezocomposite with the pseudo-random pillars may be a better choice for fabricating enhanced high-frequency linear-array ultrasound transducers; especially when mechanical dicing is used.
- Published
- 2012
- Full Text
- View/download PDF