1. Convergence of mass redistribution method for the wave equation with a unilateral constraint at the boundary
- Author
-
Dabaghi, Farshid, Petrov, Adrien, Pousin, Jérôme, Renard, Yves, Modélisation mathématique, calcul scientifique (MMCS), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
convergence ,uniqueness ,mass redistribution method ,Existence ,variational inequality ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,unilateral contact - Abstract
This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.
- Published
- 2014
- Full Text
- View/download PDF