1. Valorization of UWWTP effluents for ammonium recovery and MC elimination by advanced AOPs.
- Author
-
Deemter D, Salmerón I, Oller I, Amat AM, and Malato S
- Subjects
- Hydrogen Peroxide, Oxidation-Reduction, Wastewater toxicity, Ammonium Compounds, Water Pollutants, Chemical analysis, Water Pollutants, Chemical toxicity, Water Purification methods
- Abstract
The main objective of this study was to generate ready-to-use revalorized irrigation water for fertilization from urban wastewater treatment plant (UWWTP) effluents. The focus was on controlled retention of NH
4 + and microcontaminants (MC), using nanofiltration. Retentates generated were treated by solar photo-Fenton at circumneutral pH using Ethylenediamine-N, N'-disuccinic acid (EDDS) iron complexing agent. Solar photo-Fenton degradation efficacy was compared with electrooxidation processes as anodic oxidation, solar-assisted anodic oxidation, electro-Fenton and solar photoelectro Fenton. Finally, phytotoxicity and acute toxicity tests were performed to demonstrate the potentially safe reuse of treated wastewater for crop irrigation. Nanofiltration was able to produce a ready-to-use permeate stream containing recovered NH4 + . (valuable nutrient). Solar photo-Fenton treatment at circumneutral pH would only be of interest for rapid degradation of contaminants at less than 1 mg/L in nanofiltration retentates. Other alternative tertiary treatments, such as electrooxidation processes, are a promising alternative when a high concentration of MC requires longer process times. Anodic oxidation was demonstrated to be able to eliminate >80% of microcontaminants and solar-assisted anodic oxidation significantly reduced the electricity consumption. Electro-Fenton processes were the least efficient of the processes tested. Phytotoxicity results showed that irrigation with the permeates reduced germination, root development was mainly promoted and shoot development was positive only at low retention rate (concentration factor = 2). Acute and chronic Daphnia magna toxicity studies demonstrated that the permeate volumes should be diluted at least 50% before direct reuse for crop irrigation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF