Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.