Data from the Earth Gravitational Model (EGM2008) and the Earth Magnetic Anomaly Grid (EMAG2) were used to develop a continental scale crustal thickness model for Africa, and to estimate the depth to the bottom of the magnetic layer (DBML) and the geothermal gradient and heat flow. The results are: (1) the estimated DBML from the magnetic data varies from ~23.0 to ~37.2 km. The shallowest DBML values are located in the northern, eastern, and western parts of the continent, whereas the deepest values are observed in the central and southern regions. (2) The estimated crustal thickness based on gravity data varies from ~29.9 km in the northern and western parts of Africa to ~48.0 km in its southern regions, with an average thickness of 35.1 km for the whole continent. (3) The estimated heat flow varies between high values of 46–59 mW/m2, observed in the northern, eastern, and western regions to low values of ~< 41 mW/m2, observed in the central and southern parts of the continent. (4) The geothermal gradient values vary between 14.5 and 23.6 °C/km (5) The East African rift zone is underlain by shallow DBML characterized by high heat flow values that vary between 42 and 59 mW/m2 (6) The heat flow anomalies in Egypt and Libya may be associated with the zone of the Pelusium megashear system, and it shows heat flow values that vary between 36.3 and 59.0 mW/m2. The current study has taken advantage of the availability of the EGM2008 and EMAG2 datasets to map crustal thickness variations and DBML beneath the continental landmass of Africa. • Mapping crustal thickness variations beneath Africa using gravity data. • Determination of the depth to the bottom of the magnetic layer in Africa using magnetic data. • Calculation of the geothermal gradient and heat flow in Africa. [ABSTRACT FROM AUTHOR]