6 results on '"Nielsen R"'
Search Results
2. Human adaptation to extreme environmental conditions.
- Author
-
Ilardo M and Nielsen R
- Subjects
- Altitude, Arctic Regions, Diving physiology, Humans, Adaptation, Physiological genetics, Biological Evolution, Genomics, Selection, Genetic genetics
- Abstract
Modern humans inhabit most of earth's harshest environments and display a wide array of lifestyles. Biological adaptations, in addition to technological innovations, have enabled these geographical and cultural explorations. The study of these adaptations helps not only to fundamentally understand our evolution as a species, but also may have increasing relevance as genomics transforms fields such as personalized medicine. Here we review three cultural and environmental shifts that have brought about adaptations in modern humans; the arctic, high altitudes, and a subsistence dependent on breath-hold diving., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
3. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments.
- Author
-
Librado P, Der Sarkissian C, Ermini L, Schubert M, Jónsson H, Albrechtsen A, Fumagalli M, Yang MA, Gamba C, Seguin-Orlando A, Mortensen CD, Petersen B, Hoover CA, Lorente-Galdos B, Nedoluzhko A, Boulygina E, Tsygankova S, Neuditschko M, Jagannathan V, Thèves C, Alfarhan AH, Alquraishi SA, Al-Rasheid KA, Sicheritz-Ponten T, Popov R, Grigoriev S, Alekseev AN, Rubin EM, McCue M, Rieder S, Leeb T, Tikhonov A, Crubézy E, Slatkin M, Marques-Bonet T, Nielsen R, Willerslev E, Kantanen J, Prokhortchouk E, and Orlando L
- Subjects
- Animals, Arctic Regions, Evolution, Molecular, Genome, Horses genetics, Siberia, Adaptation, Physiological genetics, Cold Temperature, Horses physiology
- Abstract
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.
- Published
- 2015
- Full Text
- View/download PDF
4. Greenlandic Inuit show genetic signatures of diet and climate adaptation.
- Author
-
Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jørgensen ME, Korneliussen TS, Gerbault P, Skotte L, Linneberg A, Christensen C, Brandslund I, Jørgensen T, Huerta-Sánchez E, Schmidt EB, Pedersen O, Hansen T, Albrechtsen A, and Nielsen R
- Subjects
- Alleles, Arctic Regions, Body Height genetics, Body Weight genetics, Chromosomes, Human, Pair 11 genetics, Climate, Fatty Acids, Omega-3 analysis, Female, Genetic Loci, Genome, Human genetics, Genome-Wide Association Study, Greenland, Humans, Linkage Disequilibrium, Male, Membrane Lipids analysis, Membrane Lipids genetics, Polymorphism, Single Nucleotide, Selection, Genetic, Acclimatization genetics, Diet, High-Fat, Fatty Acids, Omega-3 administration & dosage, Inuit genetics
- Abstract
The indigenous people of Greenland, the Inuit, have lived for a long time in the extreme conditions of the Arctic, including low annual temperatures, and with a specialized diet rich in protein and fatty acids, particularly omega-3 polyunsaturated fatty acids (PUFAs). A scan of Inuit genomes for signatures of adaptation revealed signals at several loci, with the strongest signal located in a cluster of fatty acid desaturases that determine PUFA levels. The selected alleles are associated with multiple metabolic and anthropometric phenotypes and have large effect sizes for weight and height, with the effect on height replicated in Europeans. By analyzing membrane lipids, we found that the selected alleles modulate fatty acid composition, which may affect the regulation of growth hormones. Thus, the Inuit have genetic and physiological adaptations to a diet rich in PUFAs., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
5. The genetic prehistory of the New World Arctic.
- Author
-
Raghavan M, DeGiorgio M, Albrechtsen A, Moltke I, Skoglund P, Korneliussen TS, Grønnow B, Appelt M, Gulløv HC, Friesen TM, Fitzhugh W, Malmström H, Rasmussen S, Olsen J, Melchior L, Fuller BT, Fahrni SM, Stafford T Jr, Grimes V, Renouf MA, Cybulski J, Lynnerup N, Lahr MM, Britton K, Knecht R, Arneborg J, Metspalu M, Cornejo OE, Malaspinas AS, Wang Y, Rasmussen M, Raghavan V, Hansen TV, Khusnutdinova E, Pierre T, Dneprovsky K, Andreasen C, Lange H, Hayes MG, Coltrain J, Spitsyn VA, Götherström A, Orlando L, Kivisild T, Villems R, Crawford MH, Nielsen FC, Dissing J, Heinemeier J, Meldgaard M, Bustamante C, O'Rourke DH, Jakobsson M, Gilbert MT, Nielsen R, and Willerslev E
- Subjects
- Alaska ethnology, Arctic Regions ethnology, Base Sequence, Bone and Bones, Canada ethnology, DNA, Mitochondrial genetics, Greenland ethnology, Hair, History, Ancient, Humans, Inuit ethnology, Inuit history, Molecular Sequence Data, Siberia ethnology, Survivors history, Tooth, Genome, Human genetics, Human Migration, Inuit genetics
- Abstract
The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago., (Copyright © 2014, American Association for the Advancement of Science.)
- Published
- 2014
- Full Text
- View/download PDF
6. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears.
- Author
-
Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Babbitt C, Wray G, Li J, He W, Wang Z, Fu W, Xiang X, Morgan CC, Doherty A, O'Connell MJ, McInerney JO, Born EW, Dalén L, Dietz R, Orlando L, Sonne C, Zhang G, Nielsen R, Willerslev E, and Wang J
- Subjects
- Adaptation, Physiological, Adipose Tissue metabolism, Animals, Apolipoproteins B chemistry, Apolipoproteins B metabolism, Arctic Regions, Fatty Acids metabolism, Gene Flow, Genetics, Population, Genome, Ursidae physiology, Biological Evolution, Ursidae classification, Ursidae genetics
- Abstract
Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.