1. Facilitative plant interactions and climate simultaneously drive alpine plant diversity.
- Author
-
Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schöb C, Xiao S, Anthelme F, Björk RG, Dickinson KJ, Cranston BH, Gavilán R, Gutiérrez-Girón A, Kanka R, Maalouf JP, Mark AF, Noroozi J, Parajuli R, Phoenix GK, Reid AM, Ridenour WM, Rixen C, Wipf S, Zhao L, Escudero A, Zaitchik BF, Lingua E, Aschehoug ET, and Callaway RM
- Subjects
- Acclimatization, Altitude, Asia, Europe, Linear Models, New Zealand, North America, South America, Biodiversity, Climate, Models, Biological, Plants
- Abstract
Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change., (© 2013 John Wiley & Sons Ltd/CNRS.)
- Published
- 2014
- Full Text
- View/download PDF