1. Whole-genome sequence and mass spectrometry study of the snow blight fungus Phacidium infestans (Karsten) DSM 5139 growing at freezing temperatures.
- Author
-
Zerouki, C., Chakraborty, K., Kuittinen, S., Pappinen, A., and Turunen, O.
- Subjects
- *
FREEZES (Meteorology) , *TREHALOSE , *MASS spectrometry , *ANTIFREEZE proteins , *HEAT shock proteins , *MYCOTOXINS - Abstract
Phacidium infestans (synonym Gremmenia infestans) is a significant pathogen that impacts Pinus species across the northern regions of Europe and Asia. This study introduces the genome sequence of P. infestans Karsten DSM 5139 (Phain), obtained through Pacbio technology. The assembly resulted in 44 contigs, with a total genome size of 36,805,277 bp and a Guanine–Cytosine content of 46.4%. Genome-mining revealed numerous putative biosynthetic gene clusters that code for virulence factors and fungal toxins. The presence of the enzyme pisatin demethylase was indicative of the potential of Phain to detoxify its environment from the terpenoid phytoalexins produced by its host as a defense mechanism. Proteomic analysis revealed the potential survival strategies of Phain under the snow, which included the production of antifreeze proteins, trehalose synthesis enzymes, desaturases, proteins related to elongation of very long-chain fatty acids, and stress protein responses. Study of protein GH11 endoxylanase expressed in Escherichia coli showed an acidic optimum pH (pH 5.0) and a low optimum temperature (45 °C), which is reflective of the living conditions of the fungus. Mass spectrometry analysis of the methanol extract of Phain, incubated at − 3 °C and 22 °C, revealed differences in the produced metabolites. Both genomic and mass spectrometry analyses showed the ability of Phain to adapt its metabolic processes and secretome to freezing temperatures through the production of osmoprotectant and cryoprotectant metabolites. This comprehensive exploration of Phain's genome sequence, proteome, and secretome not only advances our understanding of its unique adaptive mechanisms but also expands the possibilities of biotechnological applications. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF