1. New Zircon U-Pb Age and Its Restriction on the Warming Time of the Interglacial Paleoclimate during the Cryogenian in the Yangtze Block.
- Author
-
Li, Minglong, Tian, Jingchun, Chen, Lin, Xu, Hui, Zheng, Deshun, and Liu, Weiqing
- Subjects
CHEMICAL weathering ,LASER ablation inductively coupled plasma mass spectrometry ,PALEOCLIMATOLOGY ,GLACIATION ,ZIRCON ,GLACIAL landforms - Abstract
The evolution of the paleoclimate and the duration of the two glacial periods during the Cryogenian in the Yangtze Block are of great geological significance for understanding "Snowball Earth." We studied the evolution of the paleoclimate during the Cryogenian, using chemical weathering, and determined the warming time of the interglacial paleoclimate, using zircon U-Pb dating in the Yangtze region. A new laser ablation ICP-MS zircon U-Pb age of 659.9 ± 3.2 Ma is reported from the middle Datangpo Formation. The chemical index of alteration (CIA) for the Cryogenian fine clastic rock samples from a drill core shows that the climate in the provenance area during the Gucheng and Nantuo glacial periods was dry and cold and that the chemical weathering was weak; the average CIA values were 63.3 and 64.2, respectively. In the early stage of the Datangpo period, the climate in the provenance area was still dry and cold, with a CIA average of 60.7, compatible with that in the two glacial periods; in the middle and late stages, the climate was warm and humid, chemical weathering was enhanced, and the average CIA rose to 77.4, compatible with the 76.9 of the Liantuo period before the Cryogenian. The evolution of other chemical weathering (paleoclimate) proxies, such as the chemical index of weathering, the plagioclase index of alteration, and Rb/Sr, is compatible with that of the CIA. The warming time of the interglacial paleoclimate during the Cryogenian in the Yangtze Block was ca. 660 Ma, roughly consistent with the ending time of the Sturtian in Australia and Mongolia, indicating that the lower part of the Datangpo Formation may still represent Sturtian glacial deposits, thus further suggesting the global consistency of the end of the Sturtian. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF