1. Increased immune cell and altered microglia and neurogenesis transcripts in an Australian schizophrenia subgroup with elevated inflammation.
- Author
-
North HF, Weissleder C, Fullerton JM, Webster MJ, and Weickert CS
- Subjects
- Humans, Follow-Up Studies, Australia, Neurogenesis physiology, Inflammation metabolism, RNA, Messenger metabolism, RNA, Microglia metabolism, Schizophrenia genetics, Schizophrenia metabolism
- Abstract
We previously identified a subgroup of schizophrenia cases (~40 %) with heightened inflammation in the neurogenic subependymal zone (SEZ) (North et al., 2021b). This schizophrenia subgroup had changes indicating reduced microglial activity, increased peripheral immune cells, increased stem cell dormancy/quiescence and reduced neuronal precursor cells. The present follow-up study aimed to replicate and extend those novel findings in an independent post-mortem cohort of schizophrenia cases and controls from Australia. RNA was extracted from SEZ tissue from 20 controls and 22 schizophrenia cases from the New South Wales Brain Tissue Resource Centre, and gene expression analysis was performed. Cluster analysis of inflammation markers (IL1B, IL1R1, SERPINA3 and CXCL8) revealed a high-inflammation schizophrenia subgroup comprising 52 % of cases, which was a significantly greater proportion than the 17 % of high-inflammation controls. Consistent with our previous report (North et al., 2021b), those with high-inflammation and schizophrenia had unchanged mRNA expression of markers for steady-state and activated microglia (IBA1, HEXB, CD68), decreased expression of phagocytic microglia markers (P2RY12, P2RY13), but increased expression of markers for macrophages (CD163), monocytes (CD14), natural killer cells (FCGR3A), and the adhesion molecule ICAM1. Similarly, the high-inflammation schizophrenia subgroup emulated increased quiescent stem cell marker (GFAPD) and decreased neuronal progenitor (DLX6-AS1) and immature neuron marker (DCX) mRNA expression; but also revealed a novel increase in a marker of immature astrocytes (VIM). Replicating primary results in an independent cohort demonstrates that inflammatory subgroups in the SEZ in schizophrenia are reliable, robust and enhance understanding of neuropathological heterogeneity when studying schizophrenia., Competing Interests: Conflict of interest Cynthia Shannon Weickert collaborates with Astellas Pharma Inc., Japan. All other authors have no conflicts of interest to disclose., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF