5 results on '"Patterson, B."'
Search Results
2. Evidence for Instantaneous Oxygen-Limited Biodegradation of Petroleum Hydrocarbon Vapors in the Subsurface.
- Author
-
Davis, G. B., Patterson, B. M., and Trefry, M. G.
- Subjects
PETROLEUM ,MINERAL oils ,HYDROCARBONS ,ORGANIC compounds ,FLUOROHYDROCARBONS ,UNDERGROUND areas ,BIODEGRADATION ,CHEMICAL decomposition ,BIOCHEMISTRY - Abstract
Petroleum hydrocarbon vapors biodegrade aerobically in the subsurface. Depth profiles of petroleum hydrocarbon vapor and oxygen concentrations from seven locations in sandy and clay soils across four states of Australia are summarized. The data are evaluated to support a simple model of biodegradation that can be used to assess hydrocarbon vapors migrating toward built environments. Multilevel samplers and probes that allow near-continuous monitoring of oxygen and total volatile organic compounds (VOCs) were used to determine concentration depth profiles and changes over time. Collation of all data across all sites showed distinct separation of oxygen from hydrocarbon vapors, and that most oxygen and hydrocarbon concentration profiles were linear or near linear with depth. The low detection limit on the oxygen probe data and because it is an in situ measurement strengthened the case that little or no overlapping of oxygen and hydrocarbon vapor concentration profiles occurred, and that indeed oxygen and hydrocarbon vapors were largely only coincident near the location where they both decreased to zero. First-order biodegradation rates determined from all depth profiles were generally lower than other published rates. With lower biodegradation rates, the overlapping of depth profiles might be expected, and yet such overlapping was not observed. A model of rapid (instantaneous) reaction of oxygen and hydrocarbon vapors compared to diffusive transport processes is shown to explain the important aspects of the 13 depth profiles. The model is simply based on the ratio of diffusion coefficients of oxygen and hydrocarbon vapors, the ratio of the maximum concentrations of oxygen and hydrocarbon vapors, the depth to the maximum hydrocarbon source concentration, and the stoichiometry coefficient. Whilst simple, the model offers the potential to incorporate aerobic biodegradation into an oxygen-limited flux-reduction approach for vapor intrusion assessments of petroleum hydrocarbon compounds. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
3. Direct injection liquid chromatography-tandem mass spectrometry as a sensitive and high-throughput method for the quantitative surveillance of antimicrobials in wastewater.
- Author
-
Li J, Shimko KM, He C, Patterson B, Bade R, Shiels R, Mueller JF, Thomas KV, and O'Brien JW
- Subjects
- Humans, Chromatography, Liquid, Wastewater, Tandem Mass Spectrometry methods, Chromatography, High Pressure Liquid methods, Australia, Solid Phase Extraction, Water Pollutants, Chemical analysis, Anti-Infective Agents
- Abstract
Environmental antimicrobial pollution and antimicrobial resistance pose a threat to environmental and human health. Wastewater analysis has been identified as a promising tool for antimicrobial monitoring and the back-estimation of antimicrobial consumption, but current pretreatment methods are tedious and complicated, limiting their scope for high-throughput analysis. A sensitive direct injection method for the quantification of 109 antimicrobials and their metabolites in wastewater samples was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was validated for both wastewater influent and effluent in terms of specificity, calibration range, matrix effect, filtration loss, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). Most analytes achieved calibration of R
2 > 0.99, and the calibration range was from 0.0002 to 150 μg L-1 . Recoveries ranged consistently between ~50 % and ~100 % and losses were attributed to sample filtration. Method LOQs were determined as low as 0.0003 μg L-1 , and acceptable accuracy (75 %-125 %) and precision (within 25 %) were achieved for >90 % of the analytes. The method was subsequently further assessed using wastewater of raw influent and treated effluent collected from 6 Australian wastewater treatment plants in 2021. In total, 37 analytes were detected in influent and 22 in effluent. Most of them could be quantified at concentrations ranging from 0.0053 to 160 μg L-1 , with benzalkonium chloride-C12, amoxicilloic acid, and cephalexin detected at the highest concentrations. The current study provides a straightforward analytical method for antimicrobial monitoring in wastewater with a fast and simple pretreatment procedure., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
4. Publication bias in trials registered in the Australian New Zealand Clinical Trials Registry: Is it a problem? A cross-sectional study.
- Author
-
Showell M, Buckman S, Berber S, Ata Allah N, Patterson B, Cole S, Farquhar C, and Jordan V
- Subjects
- Humans, Publication Bias, Cross-Sectional Studies, New Zealand, Australia, Registries, Randomized Controlled Trials as Topic, Research Design
- Abstract
Background: Timely publication of clinical trials is critical to ensure the dissemination and implementation of high-quality healthcare evidence. This study investigates the publication rate and time to publication of randomized controlled trials (RCTs) registered in the Australian New Zealand Clinical Trials Registry (ANZCTR)., Materials and Methods: We conducted a cross-sectional study of RCTs registered with the ANZCTR in 2007, 2009, and 2011. Multiple bibliographic databases were searched until October 2021 to identify trial publications. We then calculated publication rates, proportions, and the time to publish calculated from the date of first participation enrolment to publication date., Results: Of 1,970 trial registrations, 541 (27%) remained unpublished 10 to 14 years later, and the proportion of trials published decreased by 7% from 2007 to 2011. The average time to publish was 4.63 years. The prospective trial registration rate for 2007, 2009 and 2011 was 48% (952 trials) and over this time there was an increase of 19% (280 prospective trials). Trials funded by non-Industry organizations were more likely to be published (74%, 1204/1625 trials) than the industry-funded trials (61%, 224/345 trials). Larger trials with at least 1000 participants were published at a rate of 88% (85/97 trials) and on average took 5.4 years to be published. Smaller trials with less than 100 participants were published at a lower rate with 67% (687/1024 trials) published and these trials took 4.31 years on average to publish., Conclusions: Just over a quarter of all trials on the ANZCTR for 2007, 2009, and 2011 remain unpublished over a decade later. The average time to publication of nearly five years may reflect the larger trials which will have taken longer to recruit participants. Over half of study sample trials were retrospectively registered, but prospective registration improved over time, highlighting the role of mandating trial registration., Competing Interests: The authors have declared that no competing interests exist, (Copyright: © 2023 Showell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
5. Evaluating two infiltration gallery designs for managed aquifer recharge using secondary treated wastewater.
- Author
-
Bekele E, Toze S, Patterson B, Fegg W, Shackleton M, and Higginson S
- Subjects
- Australia, Water Movements, Water Purification, Conservation of Natural Resources methods, Groundwater chemistry, Wastewater chemistry, Water Supply
- Abstract
As managed aquifer recharge (MAR) becomes increasingly considered for augmenting water-sensitive urban areas, fundamental knowledge of the achievable scale, longevity and maintenance requirements of different options will become paramount. This paper reports on a 39 month pilot scale MAR scheme that infiltrated secondary treated wastewater through unsaturated sand into a limestone and sand aquifer. Two types of infiltration gallery were constructed to compare their hydraulic performance, one using crushed, graded gravel, the other using an engineered leach drain system (Atlantis Leach System(®)). Both galleries received 25 kL of nutrient-rich, secondary treated wastewater per day. The Atlantis gallery successfully infiltrated 17 ML of treated wastewater over three years. The slotted distribution pipe in the gravel gallery became clogged with plant roots after operating for one year. The infiltration capacity of the gravel gallery could not be restored despite high pressure cleaning, thus it was replaced with an Atlantis system. Reduction in the infiltration capacity of the Atlantis system was only observed when inflow was increased by about 3 fold for two months. The performance of the Atlantis system suggests it is superior to the gravel gallery, requiring less maintenance within at least the time frame of this study. The results from a bromide tracer test revealed a minimum transport time of 3.7 days for the recharged water to reach the water table below 9 m of sand and limestone. This set a limit on the time available for attenuation by natural treatment within the unsaturated zone before it recharged groundwater., (Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.