1. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland.
- Author
-
Kandeler E, Deiglmayr K, Tscherko D, Bru D, and Philippot L
- Subjects
- Austria, Bacteria isolation & purification, Base Sequence, DNA, Bacterial genetics, Ecosystem, Nitrate Reductase genetics, Nitrite Reductases genetics, Nitrogen metabolism, Oxidoreductases genetics, Poa microbiology, Polymerase Chain Reaction, RNA, Bacterial analysis, RNA, Bacterial genetics, RNA, Ribosomal, 16S analysis, RNA, Ribosomal, 16S genetics, Soil Microbiology, Bacteria genetics, Bacteria metabolism, Genes, Bacterial, Ice Cover microbiology
- Abstract
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 x 10(5) to 8.9 x 10(5) copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 x 10(3) to 2.6 x 10(4), 7.4 x 10(2) to 1.4 x 10(3), 2.5 x 10(2) to 6.4 x 10(3), and 1.2 x 10(3) to 5.5 x 10(3), respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.
- Published
- 2006
- Full Text
- View/download PDF