1. Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome.
- Author
-
Xiaoguang Sun, Ma, Shwu-Fan, Wade, Michael S., Acosta-Herrera, Marialbert, Villar, Jesús, Pino-Yanes, Maria, Tong Zhou, Bin Liu, Belvitch, Patrick, Moitra, Jaideep, Yoo-Jeong Han, Machado, Roberto, Noth, Imre, Natarajan, Viswanathan, Dudek, Steven M., Jacobson, Jeffrey R., Flores, Carlos, and Garcia, Joe G. N.
- Subjects
- *
ADULT respiratory distress syndrome , *SPHINGOSINE-1-phosphate , *BLOOD proteins , *SINGLE nucleotide polymorphisms , *LUCIFERASES , *IMMUNOASSAY - Abstract
The genetic mechanisms underlying the susceptibility to acute respiratory distress syndrome (ARDS) are poorly understood. We previously demonstrated that sphingosine 1-phosphate (S1P) and the S1P receptor S1PR3 are intimately involved in lung inflammatory responses and vascular barrier regulation. Furthermore, plasma S1PR3 protein levels were shown to serve as a biomarker of severity in critically ill ARDS patients. This study explores the contribution of single nucleotide polymorphisms (SNPs) of the S1PR3 gene to sepsis-associated ARDS. S1PR3 SNPs were identified by sequencing the entire gene and tagging SNPs selected for case-control association analysis in African- and ED samples from Chicago, with independent replication in a European case-control study of Spanish individuals. Electrophoretic mobility shift assays, luciferase activity assays, and protein immunoassays were utilized to assess the functionality of associated SNPs. A total of 80 variants, including 29 novel SNPs, were identified. Because of limited sample size, conclusive findings could not be drawn in African-descent ARDS subjects; however, significant associations were found for two promoter SNPs (rs7022797 -1899T/G; rs11137480 -1785G/C), across two ED samples supporting the association of alleles -1899G and -1785C with decreased risk for sepsis-associated ARDS. In addition, these alleles significantly reduced transcription factor binding to the S1PR3 promoter; reduced S1PR3 promoter activity, a response particularly striking after TNF-α challenge; and were associated with lower plasma S1PR3 protein levels in ARDS patients. These highly functional studies support S1PR3 as a novel ARDS candidate gene and a potential target for individualized therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF