1. Analysis of Dechlorane Plus and related compounds in gull eggs by GC-HRMS using a novel atmospheric pressure photoionization source.
- Author
-
Ayala-Cabrera, Juan F., Lacorte, Silvia, Moyano, Encarnacion, and Santos, Francisco Javier
- Subjects
- *
ATMOSPHERIC pressure , *PHOTOIONIZATION , *GULLS , *IONS , *COMPLEX ions , *MATRIX-assisted laser desorption-ionization - Abstract
Here, a new gas chromatography-atmospheric pressure photoionization-high-resolution mass spectrometry (GC-APPI-HRMS) method combined with selective pressurized liquid extraction (sPLE) has been developed for the selective determination of Dechlorane Plus (DP) and its related compounds in gull egg samples used as a bioindicator of contamination. To the best of our knowledge, this is the first time these compounds have been analyzed by GC-MS using atmospheric pressure photoionization (APPI). Negative ion dopant-assisted APPI using vapors of diethyl ether and a source temperature of 250 °C provided high ionization efficiencies and mass spectra characterized by intense in-source fragment ions as well as the presence of molecular ion and characteristic cluster ions containing oxygen atoms in their chemical structure. This made it possible to improve the selectivity in the determination of these compounds compared to that obtained with traditional GC-MS ion sources. Under optimized conditions, the sPLE GC-APPI-HRMS (Orbitrap) method provided high recoveries (> 91%), good precisions (RSD% < 12%), and low method limits of detection (0.1ā3.5 pg gā1 wet weight). The developed methodology has been applied to the determination of DP and related compounds in eggs of two gull species (L. michahellis and L. audouinii) from several Spanish protected areas. The results obtained showed significant differences in the DP concentration profiles in eggs from different gull breeding locations and between gull species of the same protected area. These results demonstrated the good performance of the GC-APPI-HRMS system to achieve a selective and sensitive determination of DP and related compounds in complex environmental samples. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF