1. Carbon Monoxide Emissions from the Washington, DC, and Baltimore Metropolitan Area: Recent Trend and COVID-19 Anomaly.
- Author
-
Lopez-Coto I, Ren X, Karion A, McKain K, Sweeney C, Dickerson RR, McDonald BC, Ahn DY, Salawitch RJ, He H, Shepson PB, and Whetstone JR
- Subjects
- Baltimore, Carbon Monoxide, District of Columbia, Environmental Monitoring, Humans, Pandemics, SARS-CoV-2, Vehicle Emissions analysis, Air Pollutants analysis, COVID-19
- Abstract
We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a
-1 since 2015 or ≈-3.1 % a-1 since 2016. In addition, we found that CO emissions show a "Sunday" effect, with emissions being lower, on average, than for the rest of the week and that the seasonal cycle is no larger than 16 %. Our results also show that the trend derived from the NEI agrees well with the observed trend, but that NEI daytime-adjusted emissions are ≈50 % larger than our estimated emissions. In 2020, measurements collected during the shutdown in activity related to the COVID-19 pandemic indicate a significant drop in CO emissions of 16 % relative to the expected emissions trend from the previous years, or 23 % relative to the mean of 2016 to February 2020. Our results also indicate a larger reduction in April than in May. Last, we show that this reduction in CO emissions was driven mainly by a reduction in traffic.- Published
- 2022
- Full Text
- View/download PDF