1. On the Forcing of ENSO Teleconnections by Anomalous Heating and Cooling.
- Author
-
Deweaver, Eric and Nigam, Sumant
- Subjects
- *
ATMOSPHERIC research , *EARTH sciences , *CLIMATOLOGY , *WEATHER forecasting , *ATMOSPHERIC circulation - Abstract
ENSO teleconnections were originally regarded as a single train of stationary Rossby waves generated by a compact region of enhanced (reduced for La Niña) equatorial convective heating. While more recent studies have greatly enhanced this dynamical picture, the dominant conceptual model of the teleconnections still identifies this monopolar convective heat source as the ultimate driver of the teleconnections. This note presents evidence that the surrounding regions of diabatic cooling are just as important as equatorial heating in producing the ENSO teleconnections. In simulations with a linear diagnostic model, heating and cooling anomalies derived from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis make comparable contributions to the upper-level eddy height anomalies. In particular, remote cooling is just as important as local heating in determining the central longitude of the subtropical El Niño anticyclones. The same diagnosis is applied to the ENSO response of an atmospheric general circulation model (AGCM) forced by observed sea surface temperatures in an integration performed by the NASA Seasonal-to-Interannual Prediction Project (NSIPP). Despite differences in the climatological basic state and diabatic heating, positive and negative heating anomalies play the same complimentary roles for the simulated ENSO response as they do for the observed ENSO pattern. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF