1. Studies on the in vitro and in vivo metabolism of the synthetic opioids U-51754, U-47931E, and methoxyacetylfentanyl using hyphenated high-resolution mass spectrometry.
- Author
-
Nordmeier F, Richter LHJ, Schmidt PH, Schaefer N, and Meyer MR
- Subjects
- Animals, Europe, Hepatocytes metabolism, Humans, Male, Microsomes, Liver metabolism, Rats, Rats, Wistar, Tandem Mass Spectrometry methods, Analgesics, Opioid metabolism, Fentanyl metabolism
- Abstract
New Synthetic Opioids (NSOs) are one class of New Psychoactive Substances (NPS) enjoying increasing popularity in Europe. Data on their toxicological or metabolic properties have not yet been published for most of them. In this context, the metabolic fate of three NSOs, namely, trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methyl-benzenacetamide (U-51754), trans-4-bromo-N-[2-(dimethylamino)cyclohexyl]-N-methyl-benzamide (U-47931E), and 2-methoxy-N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl] acetamide (methoxyacetylfentanyl), was elucidated by liquid chromatography high-resolution mass spectrometry after pooled human S9 fraction (phS9) incubations and in rat urine after oral administration. The following major reactions were observed: demethylation of the amine moiety for U-51754 and U-47931E, N-hydroxylation of the hexyl ring, and combinations thereof. N-dealkylation, O-demethylation, and hydroxylation at the alkyl part for methoxyacetylfentanyl. Except for U-47931E, parent compounds could only be found in trace amounts in rat urine. Therefore, urinary markers should preferably be metabolites, namely, the N-demethyl-hydroxy and the hydroxy metabolite for U-51754, the N-demethylated metabolite for U-47931E, and the N-dealkylated metabolite as well as the O-demethylated one for methoxyacetylfentanyl. In general, metabolite formation was comparable in vitro and in vivo, but fewer metabolites, particularly those after multiple reaction steps and phase II conjugates, were found in phS9. These results were consistent with those of comparable compounds obtained from human liver microsomes, human hepatocytes, and/or human case studies.
- Published
- 2019
- Full Text
- View/download PDF